ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Modifier"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Association of genetically-predicted placental gene expression with adult blood pressure traits
    (Wolters Kluwer, 2023) Hellwege, Jacklyn N.; Stallings, Sarah C.; Piekos, Jacqueline A.; Jasper, Elizabeth A.; Aronoff, David M.; Edwards, Todd L.; Velez Edwards, Digna R.; Medicine, School of Medicine
    Objective: Blood pressure is a complex, polygenic trait, and the need to identify prehypertensive risks and new gene targets for blood pressure control therapies or prevention continues. We hypothesize a developmental origins model of blood pressure traits through the life course where the placenta is a conduit mediating genomic and nongenomic transmission of disease risk. Genetic control of placental gene expression has recently been described through expression quantitative trait loci (eQTL) studies which have identified associations with childhood phenotypes. Methods: We conducted a transcriptome-wide gene expression analysis estimating the predicted gene expression of placental tissue in adult individuals with genome-wide association study (GWAS) blood pressure summary statistics. We constructed predicted expression models of 15 154 genes from reference placenta eQTL data and investigated whether genetically-predicted gene expression in placental tissue is associated with blood pressure traits using published GWAS summary statistics. Functional annotation of significant genes was generated using FUMA. Results: We identified 18, 9, and 21 genes where predicted expression in placenta was significantly associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP), respectively. There were 14 gene-tissue associations (13 unique genes) significant only in placenta. Conclusions: In this meta-analysis using S-PrediXcan and GWAS summary statistics, the predicted expression in placenta of 48 genes was statistically significantly associated with blood pressure traits. Notable findings included the association of FGFR1 expression with increased SBP and PP. This evidence of gene expression variation in placenta preceding the onset of adult blood pressure phenotypes is an example of extreme preclinical biological changes which may benefit from intervention.
  • Loading...
    Thumbnail Image
    Item
    Exome Sequencing Identifies Candidate Genetic Modifiers of Syndromic and Familial Thoracic Aortic Aneurysm Severity
    (Springer Nature, 2017-08) Landis, Benjamin J.; Schubert, Jeffrey A.; Lai, Dongbing; Jegga, Anil G.; Shikany, Amy R.; Foroud, Tatiana; Ware, Stephanie M.; Hinton, Robert B.; Pediatrics, School of Medicine
    Thoracic aortic aneurysm (TAA) is a genetic disease predisposing to aortic dissection. It is important to identify the genetic modifiers controlling penetrance and expressivity to improve clinical prognostication. Exome sequencing was performed in 27 subjects with syndromic or familial TAA presenting with extreme phenotypes (15 with severe TAA; 12 with mild or absent TAA). Family-based analysis of a subset of the cohort identified variants, genes, and pathways segregating with TAA severity among three families. A rare missense variant in ADCK4 (p.Arg63Trp) segregated with mild TAA in each family. Genes and pathways identified in families were further investigated in the entire cohort using the optimal unified sequence kernel association test, finding significance for the gene COL15A1 (p = 0.025) and the retina homeostasis pathway (p = 0.035). Thus, we identified candidate genetic modifiers of TAA severity by exome-based study of extreme phenotypes, which may lead to improved risk stratification and development of new medical therapies.
  • Loading...
    Thumbnail Image
    Item
    Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy
    (American Heart Association, 2022) Riaz, Muhammad; Park, Jinkyu; Sewanan, Lorenzo R.; Ren, Yongming; Schwan, Jonas; Das, Subhash K.; Pomianowski, Pawel T.; Huang, Yan; Ellis, Matthew W.; Luo, Jiesi; Liu, Juli; Song, Loujin; Chen, I-Ping; Qiu, Caihong; Yazawa, Masayuki; Tellides, George; Hwa, John; Young, Lawrence H.; Yang, Lei; Marboe, Charles C.; Jacoby, Daniel L.; Campbell, Stuart G.; Qyang, Yibing; Pediatrics, School of Medicine
    Background: Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. How dysregulated sarcomeric force production is sensed and leads to pathological remodeling remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. Methods: Our discovery was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a sarcomeric mechanosensing protein. We derived cardiomyocytes from patient-specific induced pluripotent stem cells and developed robust engineered heart tissues by seeding induced pluripotent stem cell-derived cardiomyocytes into a laser-cut scaffold possessing native cardiac fiber alignment to study human cardiac mechanobiology at both the cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease phenotype by gene editing and pharmacological interventions, we have identified a new mechanotransduction pathway in HCM, shown to be essential in modulating the phenotypic expression of HCM in 5 families bearing distinct sarcomeric mutations. Results: Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin heavy chain (MYH7) led to increased force generation, which, when coupled with slower twitch relaxation, destabilized the MLP (muscle LIM protein) stretch-sensing complex at the Z-disc. Subsequent reduction in the sarcomeric muscle LIM protein level caused disinhibition of calcineurin-nuclear factor of activated T-cells signaling, which promoted cardiac hypertrophy. We demonstrate that the common muscle LIM protein-W4R variant is an important modifier, exacerbating the phenotypic expression of HCM, but alone may not be a disease-causing mutation. By mitigating enhanced actomyosin crossbridge formation through either genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy associated with sarcomeric mutations. Conclusions: Our studies have uncovered a novel biomechanical mechanism through which dysregulated sarcomeric force production is sensed and leads to pathological signaling, remodeling, and hypertrophic responses. Together, these establish the foundation for developing innovative mechanism-based treatments for HCM that stabilize the Z-disc MLP-mechanosensory complex.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University