- Browse by Subject
Browsing by Subject "Models, Molecular"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item High-Resolution Crystal Structures Reveal Plasticity in the Metal Binding Site of Apurinic/Apyrimidinic Endonuclease I(American Chemical Society, 2014-10-21) He, Hongzhen; Chen, Qiujia; Georgiadis, Millie M.; Department of Biochemistry & Molecular Biology, IU School of MedicineApurinic/apyrimidinic endonuclease I (APE1) is an essential base excision repair enzyme that catalyzes a Mg2+-dependent reaction in which the phosphodiester backbone is cleaved 5′ of an abasic site in duplex DNA. This reaction has been proposed to involve either one or two metal ions bound to the active site. In the present study, we report crystal structures of Mg2+, Mn2+, and apo-APE1 determined at 1.4, 2.2, and 1.65 Å, respectively, representing two of the highest resolution structures yet reported for APE1. In our structures, a single well-ordered Mn2+ ion was observed coordinated by D70 and E96; the Mg2+ site exhibited disorder modeled as two closely positioned sites coordinated by D70 and E96 or E96 alone. Direct metal binding analysis of wild-type, D70A, and E96A APE1, as assessed by differential scanning fluorimetry, indicated a role for D70 and E96 in binding of Mg2+ or Mn2+ to APE1. Consistent with the disorder exhibited by Mg2+ bound to the active site, two different conformations of E96 were observed coordinated to Mg2+. A third conformation for E96 in the apo structure is similar to that observed in the APE1–DNA–Mg2+ complex structure. Thus, binding of Mg2+ in three different positions within the active site of APE1 in these crystal structures corresponds directly with three different conformations of E96. Taken together, our results are consistent with the initial capture of metal by D70 and E96 and repositioning of Mg2+ facilitated by the structural plasticity of E96 in the active site.Item A Mechanochemical Switch to Control Radical Intermediates(American Chemical Society, 2014-06-17) Brunk, Elizabeth; Kellett, Whitney F.; Richards, Nigel G. J.; Rothlisberger, Ursula; Department of Chemistry & Chemical Biology, School of ScienceB12-dependent enzymes employ radical species with exceptional prowess to catalyze some of the most chemically challenging, thermodynamically unfavorable reactions. However, dealing with highly reactive intermediates is an extremely demanding task, requiring sophisticated control strategies to prevent unwanted side reactions. Using hybrid quantum mechanical/molecular mechanical simulations, we follow the full catalytic cycle of an AdoB12-dependent enzyme and present the details of a mechanism that utilizes a highly effective mechanochemical switch. When the switch is “off”, the 5′-deoxyadenosyl radical moiety is stabilized by releasing the internal strain of an enzyme-imposed conformation. Turning the switch “on,” the enzyme environment becomes the driving force to impose a distinct conformation of the 5′-deoxyadenosyl radical to avoid deleterious radical transfer. This mechanochemical switch illustrates the elaborate way in which enzymes attain selectivity of extremely chemically challenging reactions.Item SPOT-Seq-RNA: Predicting protein-RNA complex structure and RNA-binding function by fold recognition and binding affinity prediction(Springer, 2014) Yang, Yuedong; Zhao, Huiying; Wang, Jihua; Zhou, Yaoqi; Department of BioHealth InformaticsRNA-binding proteins (RBPs) play key roles in RNA metabolism and post-transcriptional regulation. Computational methods have been developed separately for prediction of RBPs and RNA-binding residues by machine-learning techniques and prediction of protein-RNA complex structures by rigid or semiflexible structure-to-structure docking. Here, we describe a template-based technique called SPOT-Seq-RNA that integrates prediction of RBPs, RNA-binding residues, and protein-RNA complex structures into a single package. This integration is achieved by combining template-based structure-prediction software, SPARKS X, with binding affinity prediction software, DRNA. This tool yields reasonable sensitivity (46 %) and high precision (84 %) for an independent test set of 215 RBPs and 5,766 non-RBPs. SPOT-Seq-RNA is computationally efficient for genome-scale prediction of RBPs and protein-RNA complex structures. Its application to human genome study has revealed a similar sensitivity and ability to uncover hundreds of novel RBPs beyond simple homology. The online server and downloadable version of SPOT-Seq-RNA are available at http://sparks-lab.org/server/SPOT-Seq-RNA/.Item Structures of filaments from Pick's disease reveal a novel tau protein fold(Nature Research, 2018-09) Falcon, Benjamin; Zhang, Wenjuan; Murzin, Alexey G.; Murshudov, Garib; Garringer, Holly J.; Vidal, Ruben; Crowther, R. Anthony; Ghetti, Bernardino; Scheres, Sjors H.W.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineThe ordered assembly of tau protein into abnormal filamentous inclusions underlies many human neurodegenerative diseases1. Tau assemblies seem to spread through specific neural networks in each disease2, with short filaments having the greatest seeding activity3. The abundance of tau inclusions strongly correlates with disease symptoms4. Six tau isoforms are expressed in the normal adult human brain-three isoforms with four microtubule-binding repeats each (4R tau) and three isoforms that lack the second repeat (3R tau)1. In various diseases, tau filaments can be composed of either 3R or 4R tau, or of both. Tau filaments have distinct cellular and neuroanatomical distributions5, with morphological and biochemical differences suggesting that they may be able to adopt disease-specific molecular conformations6,7. Such conformers may give rise to different neuropathological phenotypes8,9, reminiscent of prion strains10. However, the underlying structures are not known. Using electron cryo-microscopy, we recently reported the structures of tau filaments from patients with Alzheimer's disease, which contain both 3R and 4R tau11. Here we determine the structures of tau filaments from patients with Pick's disease, a neurodegenerative disorder characterized by frontotemporal dementia. The filaments consist of residues Lys254-Phe378 of 3R tau, which are folded differently from the tau filaments in Alzheimer's disease, establishing the existence of conformers of assembled tau. The observed tau fold in the filaments of patients with Pick's disease explains the selective incorporation of 3R tau in Pick bodies, and the differences in phosphorylation relative to the tau filaments of Alzheimer's disease. Our findings show how tau can adopt distinct folds in the human brain in different diseases, an essential step for understanding the formation and propagation of molecular conformers.Item Unraveling the Complexities of DNA-Dependent Protein Kinase Autophosphorylation(American Society for Microbiology (ASM), 2014-06) Neal, Jessica A.; Sugiman-Marangos, Seiji; VanderVere-Carozza, Pamela; Wagner, Mike; Turchi, John; Lees-Miller, Susan P.; Junop, Murray S.; Meek, Katheryn; Department of Medicine, IU School of MedicineDNA-dependent protein kinase (DNA-PK) orchestrates DNA repair by regulating access to breaks through autophosphorylations within two clusters of sites (ABCDE and PQR). Blocking ABCDE phosphorylation (by alanine mutation) imparts a dominant negative effect, rendering cells hypersensitive to agents that cause DNA double-strand breaks. Here, a mutational approach is used to address the mechanistic basis of this dominant negative effect. Blocking ABCDE phosphorylation hypersensitizes cells to most types of DNA damage (base damage, cross-links, breaks, and damage induced by replication stress), suggesting that DNA-PK binds DNA ends that result from many DNA lesions and that blocking ABCDE phosphorylation sequesters these DNA ends from other repair pathways. This dominant negative effect requires DNA-PK's catalytic activity, as well as phosphorylation of multiple (non-ABCDE) DNA-PK catalytic subunit (DNA-PKcs) sites. PSIPRED analysis indicates that the ABCDE sites are located in the only contiguous extended region of this huge protein that is predicted to be disordered, suggesting a regulatory role(s) and perhaps explaining the large impact ABCDE phosphorylation has on the enzyme's function. Moreover, additional sites in this disordered region contribute to the ABCDE cluster. These data, coupled with recent structural data, suggest a model whereby early phosphorylations promote initiation of nonhomologous end joining (NHEJ), whereas ABCDE phosphorylations, potentially located in a “hinge” region between the two domains, lead to regulated conformational changes that initially promote NHEJ and eventually disengage NHEJ.