ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Model checking"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Goodness-of-fit inference for the additive hazards regression model with clustered current status data
    (Taylor & Francis, 2022-03-24) Feng, Yanqin; Wang, Jie; Li, Yang; Biostatistics and Health Data Science, School of Medicine
    Clustered current status data are frequently encountered in biomedical research and other areas that require survival analysis. This paper proposes graphical and formal model assessment procedures to evaluate the goodness of fit of the additive hazards model to clustered current status data. The test statistics proposed are based on sums of martingale-based residuals. Relevant asymptotic properties are established, and empirical distributions of the test statistics can be simulated utilizing Gaussian multipliers. Extensive simulation studies confirmed that the proposed test procedures work well for practical scenarios. This proposed method applies when failure times within the same cluster are correlated, and in particular, when cluster sizes can be informative about intra-cluster correlations. The method is applied to analyze clustered current status data from a lung tumorigenicity study.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University