- Browse by Subject
Browsing by Subject "Mitochondrial DNA"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item A blood-based marker of mitochondrial DNA damage in Parkinson's disease(American Association for the Advancement of Science, 2023) Qi, Rui; Sammler, Esther; Gonzalez-Hunt, Claudia P.; Barraza, Ivana; Pena, Nicholas; Rouanet, Jeremy P.; Naaldijk, Yahaira; Goodson, Steven; Fuzzati, Marie; Blandini, Fabio; Erickson, Kirk I.; Weinstein, Andrea M.; Lutz, Michael W.; Kwok, John B.; Halliday, Glenda M.; Dzamko, Nicolas; Padmanabhan, Shalini; Alcalay, Roy N.; Waters, Cheryl; Hogarth, Penelope; Simuni, Tanya; Smith, Danielle; Marras, Connie; Tonelli, Francesca; Alessi, Dario R.; West, Andrew B.; Shiva, Sruti; Hilfiker, Sabine; Sanders, Laurie H.; Oral and Maxillofacial Surgery and Hospital Dentistry, School of DentistryParkinson's disease (PD) is the most common neurodegenerative movement disorder, and neuroprotective or disease-modifying interventions remain elusive. High-throughput markers aimed at stratifying patients on the basis of shared etiology are required to ensure the success of disease-modifying therapies in clinical trials. Mitochondrial dysfunction plays a prominent role in the pathogenesis of PD. Previously, we found brain region-specific accumulation of mitochondrial DNA (mtDNA) damage in PD neuronal culture and animal models, as well as in human PD postmortem brain tissue. To investigate mtDNA damage as a potential blood-based marker for PD, we describe herein a PCR-based assay (Mito DNADX) that allows for the accurate real-time quantification of mtDNA damage in a scalable platform. We found that mtDNA damage was increased in peripheral blood mononuclear cells derived from patients with idiopathic PD and those harboring the PD-associated leucine-rich repeat kinase 2 (LRRK2) G2019S mutation in comparison with age-matched controls. In addition, mtDNA damage was elevated in non-disease-manifesting LRRK2 mutation carriers, demonstrating that mtDNA damage can occur irrespective of a PD diagnosis. We further established that Lrrk2 G2019S knock-in mice displayed increased mtDNA damage, whereas Lrrk2 knockout mice showed fewer mtDNA lesions in the ventral midbrain, compared with wild-type control mice. Furthermore, a small-molecule kinase inhibitor of LRRK2 mitigated mtDNA damage in a rotenone PD rat midbrain neuron model and in idiopathic PD patient-derived lymphoblastoid cell lines. Quantifying mtDNA damage using the Mito DNADX assay may have utility as a candidate marker of PD and for measuring the pharmacodynamic response to LRRK2 kinase inhibitors.Item Comparison of whole genome sequencing and targeted sequencing for mitochondrial DNA(Elsevier, 2021) Chen, Ruoying; Aldred, Micheala A.; Xu, Weiling; Zein, Joe; Bazeley, Peter; Comhai, Suzy A. A.; Meyers, Deborah A.; Bleecker, Eugene R.; Liu, Chunyu; Erzurum, Serpil C.; Hu, Bo; NHLBI Severe Asthma Research Program (SARP); Medicine, School of MedicineMitochondrial dysfunction has emerged to be associated with a broad spectrum of diseases, and there is an increasing demand for accurate detection of mitochondrial DNA (mtDNA) variants. Whole genome sequencing (WGS) has been the dominant sequencing approach to identify genetic variants in recent decades, but most studies focus on variants on the nuclear genome. Whole genome sequencing is also costly and time consuming. Sequencing specifically targeted for mtDNA is commonly used in the diagnostic settings and has lower costs. However, there is a lack of pairwise comparisons between these two sequencing approaches for calling mtDNA variants on a population basis. In this study, we compared WGS and mtDNA-targeted sequencing (targeted-seq) in analyzing mitochondrial DNA from 1499 participants recruited into the Severe Asthma Research Program (SARP). Our study reveals that targeted-sequencing and WGS have comparable capacity to determine genotypes and to call haplogroups and homoplasmies on mtDNA. However, there exists a large variability in calling heteroplasmies, especially for low-frequency heteroplasmies, which indicates that investigators should be cautious about heteroplasmies acquired from different sequencing methods. Further research is highly desired to improve variant detection methods for mitochondrial DNA.Item Fine-Grained Zero-Shot Learning with DNA as Side Information(NeurIPS 2021, 2021-09-29) Badirli, Sarkhan; Akata, Zeynep; Mohler, George; Picard, Christine J.; Dundar, Murat; Biology, School of ScienceFine-grained zero-shot learning task requires some form of side-information to transfer discriminative information from seen to unseen classes. As manually annotated visual attributes are extremely costly and often impractical to obtain for a large number of classes, in this study we use DNA as side information for the first time for fine-grained zero-shot classification of species. Mitochondrial DNA plays an important role as a genetic marker in evolutionary biology and has been used to achieve near-perfect accuracy in the species classification of living organisms. We implement a simple hierarchical Bayesian model that uses DNA information to establish the hierarchy in the image space and employs local priors to define surrogate classes for unseen ones. On the benchmark CUB dataset, we show that DNA can be equally promising yet in general a more accessible alternative than word vectors as a side information. This is especially important as obtaining robust word representations for fine-grained species names is not a practicable goal when information about these species in free-form text is limited. On a newly compiled fine-grained insect dataset that uses DNA information from over a thousand species, we show that the Bayesian approach outperforms state-of-the-art by a wide margin.Item Mitochondrial DNA Copy Number Variation in Asthma Risk, Severity, and Exacerbations(medRxiv, 2023-12-05) Xu, Weiling; Hong, Yun Soo; Hu, Bo; Comhair, Suzy A. A.; Janocha, Allison J.; Zein, Joe G.; Chen, Ruoying; Meyers, Deborah A.; Mauger, David T.; Ortega, Victor E.; Bleecker, Eugene R.; Castro, Mario; Denlinger, Loren C.; Fahy, John V.; Israel, Elliot; Levy, Bruce D.; Jarjour, Nizar N.; Moore, Wendy C.; Wenzel, Sally E.; Gaston, Benjamin; Liu, Chunyu; Arking, Dan E.; Erzurum, Serpil C.; National Heart, Lung, and Blood Institute (NHLBI) Severe Asthma Research Program (SARP) and TOPMed mtDNA Working Group in NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Pediatrics, School of MedicineRationale: Although airway oxidative stress and inflammation are central to asthma pathogenesis, there is limited knowledge of the relationship of asthma risk, severity, or exacerbations to mitochondrial dysfunction, which is pivotal to oxidant generation and inflammation. Objectives: We investigated whether mitochondrial DNA copy number (mtDNA-CN) as a measure of mitochondrial function is associated with asthma diagnosis, severity, oxidative stress, and exacerbations. Methods: We measured mtDNA-CN in blood in two cohorts. In the UK Biobank (UKB), we compared mtDNA-CN in mild and moderate-severe asthmatics to non-asthmatics. In the Severe Asthma Research Program (SARP), we evaluated mtDNA-CN in relation to asthma severity, biomarkers of oxidative stress and inflammation, and exacerbations. Measures and main results: In UK Biobank, asthmatics (n = 29,768) have lower mtDNA-CN compared to non-asthmatics (n = 239,158) (beta, -0.026 [95% CI, -0.038 to -0.014], P = 2.46×10-5). While lower mtDNA-CN is associated with asthma, mtDNA-CN did not differ by asthma severity in either UKB or SARP. Biomarkers of inflammation show that asthmatics have higher white blood cells (WBC), neutrophils, eosinophils, fraction exhaled nitric oxide (FENO), and lower superoxide dismutase (SOD) than non-asthmatics, confirming greater oxidative stress in asthma. In one year follow-up in SARP, higher mtDNA-CN is associated with reduced risk of three or more exacerbations in the subsequent year (OR 0.352 [95% CI, 0.164 to 0.753], P = 0.007). Conclusions: Asthma is characterized by mitochondrial dysfunction. Higher mtDNA-CN identifies an exacerbation-resistant asthma phenotype, suggesting mitochondrial function is important in exacerbation risk.Item Mitochondrial DNA Deletions and ROS Scavengers(Office of the Vice Chancellor for Research, 2015-04-17) Kennedy, John; Watkins, Keltsey; Tinkey, Michaela; Croslyn, Corinne; McDougall, ScottThe purpose of this experiment is to observe how deletion of genes that are involved in the electron transport chain cause mitochondrial damage and an increase in reactive oxygen species and if antioxidants could minimize the effects of oxidation. Saccharomyces cerevisiae is ideal for this study as it is used for research with chronological aging. Chronological aging is the survival during the stationary phase after nutrients and space becomes limited and has been used to study neurons in the central nervous system, oxidative stress, and changes in morphology. Deletions of mitochondrial DNA and the increase of reactive oxygen species over time has been linked to a decline in the production of ROS scavengers. ROS scavengers serve as a defense against the oxidation of various cells by neutralizing the reactive oxygen species. These include antioxidants such as Vitamin-C, Vitamin-E, and flavonoids. For this experiment, genes from the yeast Saccharomyces cerevisiae will be removed using gene knockout, which will inactivate the genes of interest. The genes of interest are Cox 1, 2, 3, 5a, 12, 23 and SOD 1 (Superoxide Dismutase) and 2, OPA 1, and Atg32. These genes are important in the electron transport chain, fission, fusion, and mitophagy. The mutated yeast will then be placed into a ROS scavenger media containing Vitamin-C and incubated overnight. Assays that will be used include Rhodamine 123 which determines membrane potential and proton flow from the inner membrane to the matrix, Janus Green which reveals alterations in the electron transport chain and amount of oxygen available, Cytochrome c Oxidase assay which can determine cytochrome c activity and outer membrane stress, and dihydrorhodamine to indicate ROS levels. Using fluorescent dyes such as Rhodamine 123 will allow the cells to be observe through a microscope and observe the amount of damage and fission that has been produced by the mutations and the effects of the antioxidants on the destruction of the mutated cells.Item Mitochondrial DNA-enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity(American Society for Clinical Investigation, 2017-07-20) Cai, Yan; Xu, Ming-Jiang; Koritzinsky, Erik H.; Zhou, Zhou; Wang, Wei; Cao, Haixia; Yuen, Peter S.T.; Ross, Ruth A.; Star, Robert A.; Liangpunsaku, Suthat; Gao, Bin; Medicine, School of MedicineOver the last several years, one of the major advances in the field of alcoholic liver disease research was the discovery that binge alcohol consumption induced neutrophilia and hepatic neutrophil infiltration in chronically ethanol-fed mice and human subjects with excessive alcohol use (EAU); however, the underlying mechanisms remain obscure. Here, we demonstrated that chronic EAU patients with a history of recent excessive drinking (EAU + RD) had higher serum levels of mitochondrial DNA (mtDNA)-enriched microparticles (MPs) than EAU without recent drinking (EAU - RD) and healthy controls, which correlated positively with circulating neutrophils. Similarly, mice with chronic-plus-binge (E10d + 1B) ethanol feeding also had markedly elevated serum levels of mtDNA-enriched MPs, with activation of hepatic ER stress and inflammatory responses. Inhibition of ER stress by gene KO or inhibitors attenuated ethanol-induced elevation of mtDNA-enriched MPs, neutrophilia, and liver injury. The data from the study of hepatocyte-specific deletion of the protein kinase RNA-like ER kinase (Perk) gene in mice and of cultured hepatocytes demonstrated that hepatocytes were the main source of mtDNA-enriched MPs after ethanol feeding. Finally, administration of mtDNA-enriched MPs isolated from E10d+1B-fed mice caused neutrophilia in mice. In conclusion, E10d + 1B ethanol consumption activates hepatic ER stress-dependent mtDNA-enriched MP release, leading to neutrophilia and liver injury.Item The Molecular Mechanism of Break Induced Replication(2013-02-14) Ayyar, Sandeep; Malkova, AnnaDNA double strand break (DSB) is one of the most threatening of all types of DNA damages as it leads to a complete breakage of the chromosome. The cell has evolved several mechanisms to repair DSBs, one of which is break-induced replication (BIR). BIR repair of DSBs occurs through invasion of one end of the broken chromosome into a homologous template followed by processive replication of DNA from the donor molecule. BIR is a key cellular process and is implicated in the restart of collapsed replication forks and several chromosomal instabilities. Recently, our lab demonstrated that the fidelity of DNA synthesis associated with BIR in yeast Saccharomyces Cerevisiae is extremely low. The level of frameshift mutations associated with BIR is 1000-fold higher as compared to normal DNA replication. This work demonstrates that BIR stimulates base substitution mutations, which comprise 90% of all point mutations, making them 400-1400 times more frequent than during S-phase DNA replication. We show that DNA Polymerase δ proofreading corrects many of the base substitutions in BIR. Further, we demonstrate that Pif1, a 5’-3’ DNA helicase, is responsible for making BIR efficient and also highly mutagenic. Pif1p is responsible for the majority of BIR mutagenesis not only close to the DSB site, where BIR is less stable but also at chromosomal regions far away from the DSB break site, where BIR is fast, processive and stable. This work further reveals that, at positions close to the DSB, BIR mutagenesis in the absence of Pif1 depends on Rev3, the catalytic subunit of translesion DNA Polymerase ζ. We observe that mutations promoted by Pol ζ are often complex and propose that they are generated by a Pol ζ- led template switching mechanism. These complex mutations were also found to be frequently associated with gross chromosomal rearrangements. Finally we demonstrate that BIR is carried out by unusual conservative mode of DNA synthesis. Based on this study, we speculate that the unusual mode of DNA synthesis associated with BIR leads to various kinds of genomic instability including mutations and chromosomal rearrangements.Item Succinyl-CoA Synthetase Dysfunction as a Mechanism of Mitochondrial Encephalomyopathy: More than Just an Oxidative Energy Deficit(MDPI, 2023-06-27) Lancaster, Makayla S.; Graham, Brett H.; Medical and Molecular Genetics, School of MedicineBiallelic pathogenic variants in subunits of succinyl-CoA synthetase (SCS), a tricarboxylic acid (TCA) cycle enzyme, are associated with mitochondrial encephalomyopathy in humans. SCS catalyzes the interconversion of succinyl-CoA to succinate, coupled to substrate-level phosphorylation of either ADP or GDP, within the TCA cycle. SCS-deficient encephalomyopathy typically presents in infancy and early childhood, with many patients succumbing to the disease during childhood. Common symptoms include abnormal brain MRI, basal ganglia lesions and cerebral atrophy, severe hypotonia, dystonia, progressive psychomotor regression, and growth deficits. Although subunits of SCS were first identified as causal genes for progressive metabolic encephalomyopathy in the early 2000s, recent investigations are now beginning to unravel the pathomechanisms underlying this metabolic disorder. This article reviews the current understanding of SCS function within and outside the TCA cycle as it relates to the complex and multifactorial mechanisms underlying SCS-related mitochondrial encephalomyopathy.Item Urine Cell-Free Mitochondrial DNA as a Marker of Weight Loss and Body Composition in Older Adults with HIV(Wolters Kluwer, 2021) Johnston, Carrie D.; Siegler, Eugenia L.; Rice, Michelle C.; Derry, Heather M.; Hootman, Katie C.; Zhu, Yuan-Shan; Burchett, Chelsie O.; Gupta, Samir K.; Choi, Mary E.; Glesby, Marshall J.; Medicine, School of MedicineBackground: Older adults with HIV (OAH) experience more comorbidities and geriatric syndromes than their HIV-negative peers, perhaps because of chronic inflammation. Cell-free mitochondrial DNA (cfmtDNA) released from cells undergoing necrosis-mediated cell death potentially acts as both a mediator and marker of inflammatory dysregulation. We hypothesized that urinary cfmtDNA would be associated with frailty, body composition, and fall history in OAH. Methods: OAH completed frailty testing, a psychosocial survey, body composition assessment, and measurement of urine cfmtDNA and urine albumin:creatinine in this cross-sectional study. Urine cfmtDNA was measured by quantative polymerase chain reaction and normalized to urinary creatinine. Results: Across 150 participants, the mean age was 61 years (SD 6 years), half identified as Black, one-third were women, and 93% had HIV-1 viral load <200 copies/mL. Two-thirds met criteria for a prefrail or frail state. Those with unintentional weight loss had higher urine cfmtDNA concentrations (P = 0.03). Higher urine cfmtDNA was inversely associated with the skeletal muscle index (β = -0.19, P < 0.01) and fat mass index (β = -0.08, P = 0.02) in separate multiple linear regression models adjusted for age, sex, and presence of moderate-severe albuminuria. Conclusions: In this cross-sectional study of OAH, higher levels of urine cfmtDNA were more common in subjects with less robust physical condition, including unintentional weight loss and less height-scaled body mass of fat and muscle. These findings suggest urine cfmtDNA may reflect pathophysiologic aging processes in OAH, predisposing them to geriatric syndromes. Longitudinal investigation of urine cfmtDNA as a biomarker of geriatric syndromes is warranted.