- Browse by Subject
Browsing by Subject "Misclassification"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Joint modeling of longitudinal and competing-risk data using cumulative incidence functions for the failure submodels accounting for potential failure cause misclassification through double sampling(Oxford University Press, 2023) Thomadakis, Christos; Meligkotsidou, Loukia; Yiannoutsos, Constantin T.; Touloumi, Giota; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthMost of the literature on joint modeling of longitudinal and competing-risk data is based on cause-specific hazards, although modeling of the cumulative incidence function (CIF) is an easier and more direct approach to evaluate the prognosis of an event. We propose a flexible class of shared parameter models to jointly model a normally distributed marker over time and multiple causes of failure using CIFs for the survival submodels, with CIFs depending on the “true” marker value over time (i.e., removing the measurement error). The generalized odds rate transformation is applied, thus a proportional subdistribution hazards model is a special case. The requirement that the all-cause CIF should be bounded by 1 is formally considered. The proposed models are extended to account for potential failure cause misclassification, where the true failure causes are available in a small random sample of individuals. We also provide a multistate representation of the whole population by defining mutually exclusive states based on the marker values and the competing risks. Based solely on the assumed joint model, we derive fully Bayesian posterior samples for state occupation and transition probabilities. The proposed approach is evaluated in a simulation study and, as an illustration, it is fitted to real data from people with HIV.Item A pseudo-likelihood method for estimating misclassification probabilities in competing-risks settings when true event data are partially observed(Wiley, 2020) Mpofu, Philani B.; Bakoyannis, Giorgos; Yiannoutsos, Constantin T.; Mwangi, Ann W.; Mburu, Margaret; Biostatistics, School of Public HealthOutcome misclassification occurs frequently in binary-outcome studies and can result in biased estimation of quantities such as the incidence, prevalence, cause-specific hazards, cumulative incidence functions etc. A number of remedies have been proposed to address the potential misclassification of the outcomes in such data. The majority of these remedies lie in the estimation of misclassification probabilities, which are in turn used to adjust analyses for outcome misclassification. A number of authors advocate using a gold-standard procedure on a sample internal to the study to learn about the extent of the misclassification. With this type of internal validation, the problem of quantifying the misclassification also becomes a missing data problem as, by design, the true outcomes are only ascertained on a subset of the entire study sample. Although, the process of estimating misclassification probabilities appears simple conceptually, the estimation methods proposed so far have several methodological and practical shortcomings. Most methods rely on missing outcome data to be missing completely at random (MCAR), a rather stringent assumption which is unlikely to hold in practice. Some of the existing methods also tend to be computationally-intensive. To address these issues, we propose a computationally-efficient, easy-to-implement, pseudo-likelihood estimator of the misclassification probabilities under a missing at random (MAR) assumption, in studies with an available internal validation sample. We present the estimator through the lens of studies with competing-risks outcomes, though the estimator extends beyond this setting. We describe the consistency and asymptotic distributional properties of the resulting estimator, and derive a closed-form estimator of its variance. The finite-sample performance of this estimator is evaluated via simulations. Using data from a real-world study with competing risks outcomes, we illustrate how the proposed method can be used to estimate misclassification probabilities. We also show how the estimated misclassification probabilities can be used in an external study to adjust for possible misclassification bias when modeling cumulative incidence functions.Item Statistical Methods for Dealing with Outcome Misclassification in Studies with Competing Risks Survival Outcomes(2020-02) Mpofu, Philani Brian; Yiannoutsos, Constantin; Bakoyannis, Giorgios; Tu, Wanzhu; Song, YiqingIn studies with competing risks outcomes, misidentifying the event-type responsible for the observed failure is, by definition, an act of misclassification. Several authors have established that such misclassification can bias competing risks statistical analyses, and have proposed statistical remedies to aid correct modeling. Generally, these rely on adjusting the estimation process using information about outcome misclassification, but invariably assume that outcome misclassification is non-differential among study subjects regardless of their individual characteristics. In addition, current methods tend to adjust for the misclassification within a semi-parametric framework of modeling competing risks data. Building on the existing literature, in this dissertation, we explore the parametric modeling of competing risks data in the presence of outcome misclassification, be it differential or non-differential. Specifically, we develop parametric pseudo-likelihood-based approaches for modeling cause-specific hazards while adjusting for misclassification information that is obtained either through data internal or external to the current study (respectively, internal or external-validation sampling). Data from either type of validation sampling are used to model predictive values or misclassification probabilities, which, in turn, are used to adjust the cause-specific hazard models. We show that the resulting pseudo-likelihood estimates are consistent and asymptotically normal, and verify these theoretical properties using simulation studies. Lastly, we illustrate the proposed methods using data from a study involving people living with HIV/AIDS (PLWH)in the East-African consortium of the International Epidemiologic Databases for the Evaluation of HIV/AIDS (IeDEA EA). In this example, death is frequently misclassified as disengagement from care as many deaths go unreported to health facilities caring for these patients. In this application, we model the cause-specific hazards of death and disengagement from care among PLWH after they initiate anti-retroviral treatment, while adjusting for death misclassification.