ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Miniature mass spectrometry"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Intraoperative detection of isocitrate dehydrogenase mutations in human gliomas using a miniature mass spectrometer
    (SpringerLink, 2019-12) Brown, Hannah Marie; Pu, Fan; Dey, Mahua; Miller, James; Shah, Mitesh V.; Shapiro, Scott A.; Ouyang, Zheng; Cohen-Gadol, Aaron A.; Cooks, R. Graham; Neurological Surgery, School of Medicine
    Knowledge of the isocitrate dehydrogenase (IDH) mutation status of glioma patients could provide insights for decision-making during brain surgery. However, pathology is not able to provide such information intraoperatively. Here we describe the first application of a miniature mass spectrometer (MS) to the determination of IDH mutation status in gliomas intraoperatively. The instrumentation was modified to be compatible with use in the operating room. Tandem MS was performed on the oncometabolite, 2-hydroxyglutarate, and a reference metabolite, glutamate, which is not involved in the IDH mutation. Ratios of fragment ion intensities were measured to calculate an IDH mutation score, which was used to differentiate IDH mutant and wild-type tissues. The results of analyzing 25 biopsies from 13 patients indicate that reliable determination of IDH mutation status was achieved (p = 0.0001, using the Kruskal-Wallis non-parametric test). With its small footprint and low power consumption and noise level, this application of miniature mass spectrometers represents a simple and cost-effective platform for an important intraoperative measurement.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University