- Browse by Subject
Browsing by Subject "Microtubule"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination(Elsevier, 2016-11-23) Brill, Monika S.; Kleele, Tatjana; Ruschkies, Laura; Wang, Mengzhe; Marahori, Natalia A.; Reuter, Miriam S.; Hausrat, Torben J.; Weigand, Emily; Fisher, Matthew; Ahles, Andrea; Engelhardt, Stefan; Bishop, Derron L.; Kneussel, Matthias; Misgeld, Thomas; Department of Cellular & Integrative Physiology, IU School of MedicineDevelopmental axon remodeling is characterized by the selective removal of branches from axon arbors. The mechanisms that underlie such branch loss are largely unknown. Additionally, how neuronal resources are specifically assigned to the branches of remodeling arbors is not understood. Here we show that axon branch loss at the developing mouse neuromuscular junction is mediated by branch-specific microtubule severing, which results in local disassembly of the microtubule cytoskeleton and loss of axonal transport in branches that will subsequently dismantle. Accordingly, pharmacological microtubule stabilization delays neuromuscular synapse elimination. This branch-specific disassembly of the cytoskeleton appears to be mediated by the microtubule-severing enzyme spastin, which is dysfunctional in some forms of upper motor neuron disease. Our results demonstrate a physiological role for a neurodegeneration-associated modulator of the cytoskeleton, reveal unexpected cell biology of branch-specific axon plasticity and underscore the mechanistic similarities of axon loss in development and disease.Item Nerve growth factor alters microtubule targeting agent-induced neurotransmitter release but not MTA-induced neurite retraction in sensory neurons(Elsevier, 2016-05) Pittman, Sherry K.; Gracias, Neilia G.; Fehrenbacher, Jill C.; Department of Pharmacology and Toxicology, IU School of MedicinePeripheral neuropathy is a dose-limiting side effect of anticancer treatment with the microtubule-targeted agents (MTAs), paclitaxel and epothilone B (EpoB); however, the mechanisms by which the MTAs alter neuronal function and morphology are unknown. We previously demonstrated that paclitaxel alters neuronal sensitivity, in vitro, in the presence of nerve growth factor (NGF). Evidence in the literature suggests that NGF may modulate the neurotoxic effects of paclitaxel. Here, we examine whether NGF modulates changes in neuronal sensitivity and morphology induced by paclitaxel and EpoB. Neuronal sensitivity was assessed using the stimulated release of calcitonin gene-related peptide (CGRP), whereas morphology of established neurites was evaluated using a high content screening system. Dorsal root ganglion cultures, maintained in the absence or presence of NGF, were treated from day 7 to day 12 in culture with paclitaxel (300nM) or EpoB (30nM). Following treatment, the release of CGRP was stimulated using capsaicin or high extracellular potassium. In the presence of NGF, EpoB mimicked the effects of paclitaxel: capsaicin-stimulated release was attenuated, potassium-stimulated release was slightly enhanced and the total peptide content was unchanged. In the absence of NGF, both paclitaxel and EpoB decreased capsaicin- and potassium-stimulated release and the total peptide content, suggesting that NGF may reverse MTA-induced hyposensitivity. Paclitaxel and EpoB both decreased neurite length and branching, and this attenuation was unaffected by NGF in the growth media. These differential effects of NGF on neuronal sensitivity and morphology suggest that neurite retraction is not a causative factor to alter neuronal sensitivity.Item Photo-activated microtubule targeting drugs: Advancing therapies for colorectal cancer(Baishideng, 2024) Singh, Naresh; Sharma, Samantha; Medical and Molecular Genetics, School of MedicineOver the years immunotherapy has demonstrably improved the field of cancer treatment. However, achieving long-term survival for colorectal cancer (CRC) patients remains a significant unmet need. Combination immunotherapies incorporating targeted drugs like MEK or multi-kinase inhibitors have offered some palliative benefit. Nevertheless, substantial gaps remain in the current therapeutic armamentarium for CRC. In recent years, there has been a surge of interest in exploring novel treatment strategies, including the application of light-activated drugs in conjunction with optical devices. This approach holds promise for achieving localized and targeted delivery of cytotoxic agents, such as microtubule-targeting drugs, directly to cancerous cells within the colon.