ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Microcomputed tomography"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Combined Thermoneutral Housing and Raloxifene Treatment Improves Trabecular Bone Microarchitecture and Strength in Growing Female Mice
    (Springer, 2023) Jacobson, Andrea; Tastad, Carli A.; Creecy, Amy; Wallace, Joseph M.; Orthopaedic Surgery, School of Medicine
    Thermoneutral housing and Raloxifene (RAL) treatment both have potential for improving mechanical and architectural properties of bone. Housing mice within a 30 to 32 °C range improves bone quality by reducing the consequences of cold stress, such as shivering and metabolic energy consumption (Chevalier et al. in Cell Metab 32(4):575-590.e7, 2020; Martin et al. in Endocr Connect 8(11):1455-1467, 2019; Hankenson et al. in Comp Med 68(6):425-438, 2018). Previous work suggests that Raloxifene can enhance bone strength and geometry (Ettinger et al. in Jama 282(7):637-645, 1999; Powell et al. in Bone Rep 12:100246, 2020). An earlier study in our lab utilized long bones to examine the effect of thermoneutral housing and Raloxifene treatment in mice, but no significant interactive effects were found. The lack of an impact is hypothesized to be connected to the short 6-week duration of the study and the type of bone analyzed. This study will examine the same question within the axial skeleton, which has a higher proportion of trabecular bone. After 6 weeks of treatment with RAL, vertebrae from female C57BL/6 J mice underwent microcomputed tomography (μCT), architectural analysis, and compression testing. Most of the tested geometric properties (bone volume/tissue volume percent, trabecular thickness, trabecular number, trabecular spacing) improved with both the housing and RAL treatment. The effect sizes suggested an additive effect when treating mice housed under thermoneutral conditions. While ultimate force was enhanced with the treatment and housing, force normalized by bone volume fraction was not significantly different between groups. For longer pre-clinical trials, it may be important to consider the impacts of temperature on mice to improve the accuracy of these models.
  • Loading...
    Thumbnail Image
    Item
    The effect of acid etching on remineralization of incipient caries lesions : a micro-ct study
    (2009) Yeslam, Hanin E.; Ando, Masatoshi; Gonzalez-Cabezas, Carlos, 1966-; Chu, Tien-Min Gabriel; Lund, Melvin; Cochran, Michael
    Etching of enamel caries lesions has been demonstrated to enhance remineralization. However, this effect reaches a plateau after a period of time. This study aimed at investigating the effectiveness of additional acid etching on remineralization. Forty 1 mm × 2 mm human enamel blocks with chemically induced artificial incipient lesions were used. Ten specimens were randomly selected at the end of demineralization for transverse microradiography (TMR) analysis. The remaining specimens were then divided into three groups (n = 10). Group A was remineralized by a pH cycling system with 1100 ppm sodium fluoride for 20 days. In group B, the specimens were etched with 35-percent phosphoric acid for 30 s and then remineralized. Group C was remineralized by same procedure as group B plus and given an additional acid etch after 10 days of remineralization. Mineral density was measured by x-ray microtomography (µ-CT). The volumetric mineral content [VM (µm3×105)] was determined between 91 and 0-wt%. The µ-CT % mineral recovery (%) was calculated using the formula 100×(remineralize VM - demineralization VM) / (sound VM - demineralization VM). One-hundred-μm sections of demineralized and remineralized specimens were used to assess the mineral loss (IML: vol%×µm) and lesion depth (µm) using TMR. The three groups showed no significant difference in mineral change or mineral content for µ-CT or TMR lesion depth. The TMR IML showed a significant difference between the demineralized specimens and the three remineralized groups. The correlation between TMR IML and TMR lesion depth was 0.66 (p < 0.0001). The µ-CT percent mineral recovery from demineralization was correlated with neither TMR IML nor TMR lesion depth. When evaluated with µ-CT, the twice-acid-etched group presented lower mineral gain values than the group etched only once with acid. Also, the twice-etched group presented lower mineral gain and greater TMR IML compared with the non-acid etch group. TMR images revealed reduction of surface layer in the acid-etched groups, especially in the twice-etched group, in which significant reduction or loss of surface layer occurred. Based on these results, we conclude that additional acid etching with 35-percent phosphoric acid does not enhance remineralization compared with a single application of acid etching. We believe that the viable existence of the surface layer is essential for remineralization of the lesion. Further investigations into the accuracy of µ-CT to detect minute mineral changes in incipient caries lesions are probably needed.
  • Loading...
    Thumbnail Image
    Item
    FGF21, not GCN2, influences bone morphology due to dietary protein restrictions
    (Elsevier, 2020- 06) McNulty, Margaret A.; Goupil, Brad A.; Albarado, Diana C.; Castaño-Martinez, Teresa; Ambrosi, Thomas H.; Puh, Spela; Schulz, Tim J.; Schürmann, Annette; Morrison, Christopher D.; Laeger, Thomas; Anatomy and Cell Biology, School of Medicine
    Background Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling. The purpose of the current study was to evaluate the effect of dietary protein and methionine restriction on bone in lean and obese mice, and clarify whether FGF21 and general control nonderepressible 2 (GCN2) kinase, that are part of a novel endocrine pathway implicated in the detection of protein restriction, influence the effect of dietary protein restriction on bone. Methods Adult wild-type (WT) or Fgf21 KO mice were fed a normal protein (18 kcal%; CON) or low protein (4 kcal%; LP) diet for 2 or 27 weeks. In addition, adult WT or Gcn2 KO mice were fed a CON or LP diet for 27 weeks. Young New Zealand obese (NZO) mice were placed on high-fat diets that provided protein at control (16 kcal%; CON), low levels (4 kcal%) in a high-carbohydrate (LP/HC) or high-fat (LP/HF) regimen, or on high-fat diets (protein, 16 kcal%) that provided methionine at control (0.86%; CON-MR) or low levels (0.17%; MR) for up to 9 weeks. Long bones from the hind limbs of these mice were collected and evaluated with micro-computed tomography (μCT) for changes in trabecular and cortical architecture and mass. Results In WT mice the 27-week LP diet significantly reduced cortical bone, and this effect was enhanced by deletion of Fgf21 but not Gcn2. This decrease in bone did not appear after 2 weeks on the LP diet. In addition, Fgf21 KO mice had significantly less bone than their WT counterparts. In obese NZO mice dietary protein and methionine restriction altered bone architecture. The changes were mediated by FGF21 due to methionine restriction in the presence of cystine, which did not increase plasma FGF21 levels and did not affect bone architecture. Conclusions This study provides direct evidence of a reduction in bone following long-term dietary protein restriction in a mouse model, effects that appear to be mediated by FGF21.
  • Loading...
    Thumbnail Image
    Item
    Ribosylation-induced increase in advanced glycation end products has limited impacts on mechanical properties in human cortical bone
    (Elsevier, 2025-04-02) Gallagher, Katelynn R.; White, Olivia N.; Tomaschke, Andrew A.; Segvich, Dyann M.; Wallace, Joseph M.; Biomedical Engineering, Purdue School of Engineering and Technology
    Diabetes affects over 38 million individuals in the U.S. and is associated with a heightened risk of fractures despite normal or elevated bone mineral density (BMD). This increased fracture susceptibility may be linked to the accumulation of advanced glycation end products (AGEs), which are theorized to compromise bone quality by stiffening the collagen network, leading to tissue embrittlement. In this study, the mechanical effects of AGE accumulation in human cortical bone were evaluated in vitro. Bone beams, derived from a human femur, were incubated in a ribose solution to induce AGE accumulation, while control beams were incubated in a control solution. Dynamic Mechanical Analysis (DMA) and three-point bending tests were conducted to assess the mechanical properties of the bone beams. Fluorescent AGE analysis was performed to quantify and compare AGE levels between the groups. The study found no significant differences in mechanical properties between the control and ribose-treated groups, despite a significant elevation in normalized AGE content in the ribose group. These results suggest that AGE accumulation may have a weaker impact on the mechanical properties of human bone than previously hypothesized. However, this study emphasizes the need for further research to explore the relationship between AGE accumulation and bone quality. Understanding this relationship is crucial for developing strategies to reduce fracture risk in populations with high AGE levels, such as diabetic and elderly individuals.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University