- Browse by Subject
Browsing by Subject "Microbiota"
Now showing 1 - 10 of 24
Results Per Page
Sort Options
Item The Application of Metabolomics to Probiotic and Prebiotic Interventions in Human Clinical Studies(MDPI, 2020-03) O’Connell, Thomas M.; Otolaryngology -- Head and Neck Surgery, School of MedicineThere is an ever-increasing appreciation for our gut microbiota that plays a crucial role in the maintenance of health, as well as the development of disease. Probiotics are live bacteria that are consumed to increase the population of beneficial bacteria and prebiotics are dietary substrates intended to promote the propagation of beneficial bacteria. In order to optimize the use of probiotics and prebiotics, a more complete biochemical understanding of the impact that these treatments have on the community and functioning of the gut microbiota is required. Nucleic acid sequencing methods can provide highly detailed information on the composition of the microbial communities but provide less information on the actual function. As bacteria impart much of their influence on the host through the production of metabolites, there is much to be learned by the application of metabolomics. The focus of this review is on the use of metabolomics in the study of probiotic and prebiotic treatments in the context of human clinical trials. Assessment of the current state of this research will help guide the design of future studies to further elucidate the biochemical mechanism by which probiotics and prebiotics function and pave the way toward more personalized applications.Item Association between microbiome and the development of adverse posttraumatic neuropsychiatric sequelae after traumatic stress exposure(Springer Nature, 2023-11-18) Zeamer, Abigail L.; Salive, Marie-Claire; An, Xinming; Beaudoin, Francesca L.; House, Stacey L.; Stevens, Jennifer S.; Zeng, Donglin; Neylan, Thomas C.; Clifford, Gari D.; Linnstaedt, Sarah D.; Rauch, Scott L.; Storrow, Alan B.; Lewandowski, Christopher; Musey, Paul I., Jr.; Hendry, Phyllis L.; Sheikh, Sophia; Jones, Christopher W.; Punches, Brittany E.; Swor, Robert A.; Hudak, Lauren A.; Pascual, Jose L.; Seamon, Mark J.; Harris, Erica; Pearson, Claire; Peak, David A.; Merchant, Roland C.; Domeier, Robert M.; Rathlev, Niels K.; O’Neil, Brian J.; Sergot, Paulina; Sanchez, Leon D.; Bruce, Steven E.; Kessler, Ronald C.; Koenen, Karestan C.; McLean, Samuel A.; Bucci, Vanni; Haran, John P.; Emergency Medicine, School of MedicinePatients exposed to trauma often experience high rates of adverse post-traumatic neuropsychiatric sequelae (APNS). The biological mechanisms promoting APNS are currently unknown, but the microbiota-gut-brain axis offers an avenue to understanding mechanisms as well as possibilities for intervention. Microbiome composition after trauma exposure has been poorly examined regarding neuropsychiatric outcomes. We aimed to determine whether the gut microbiomes of trauma-exposed emergency department patients who develop APNS have dysfunctional gut microbiome profiles and discover potential associated mechanisms. We performed metagenomic analysis on stool samples (n = 51) from a subset of adults enrolled in the Advancing Understanding of RecOvery afteR traumA (AURORA) study. Two-, eight- and twelve-week post-trauma outcomes for post-traumatic stress disorder (PTSD) (PTSD checklist for DSM-5), normalized depression scores (PROMIS Depression Short Form 8b) and somatic symptom counts were collected. Generalized linear models were created for each outcome using microbial abundances and relevant demographics. Mixed-effect random forest machine learning models were used to identify associations between APNS outcomes and microbial features and encoded metabolic pathways from stool metagenomics. Microbial species, including Flavonifractor plautii, Ruminococcus gnavus and, Bifidobacterium species, which are prevalent commensal gut microbes, were found to be important in predicting worse APNS outcomes from microbial abundance data. Notably, through APNS outcome modeling using microbial metabolic pathways, worse APNS outcomes were highly predicted by decreased L-arginine related pathway genes and increased citrulline and ornithine pathways. Common commensal microbial species are enriched in individuals who develop APNS. More notably, we identified a biological mechanism through which the gut microbiome reduces global arginine bioavailability, a metabolic change that has also been demonstrated in the plasma of patients with PTSD.Item Association of Antibiotics, Airway Microbiome, and Inflammation in Infants with Cystic Fibrosis(American Thoracic Society, 2017-10) Pittman, Jessica E.; Wylie, Kristine M.; Akers, Kathryn; Storch, Gregory A.; Hatch, Joseph; Quante, Jane; Frayman, Katherine B.; Clarke, Nadeene; Davis, Miriam; Stick, Stephen M.; Hall, Graham L.; Montgomery, Gregory; Ranganathan, Sarath; Davis, Stephanie D.; Ferkol, Thomas W.; Pediatrics, School of MedicineRATIONALE: The underlying defect in the cystic fibrosis (CF) airway leads to defective mucociliary clearance and impaired bacterial killing, resulting in endobronchial infection and inflammation that contributes to progressive lung disease. Little is known about the respiratory microbiota in the early CF airway and its relationship to inflammation. OBJECTIVES: To examine the bacterial microbiota and inflammatory profiles in bronchoalveolar lavage fluid and oropharyngeal secretions in infants with CF. METHODS: Infants with CF from U.S. and Australian centers were enrolled in a prospective, observational study examining the bacterial microbiota and inflammatory profiles of the respiratory tract. Bacterial diversity and density (load) were measured. Lavage samples were analyzed for inflammatory markers (interleukin 8, unbound neutrophil elastase, and absolute neutrophil count) in the epithelial lining fluid. RESULTS: Thirty-two infants (mean age, 4.7 months) underwent bronchoalveolar lavage and oropharyngeal sampling. Shannon diversity strongly correlated between upper and lower airway samples from a given subject, although community compositions differed. Microbial diversity was lower in younger subjects and in those receiving daily antistaphylococcal antibiotic prophylaxis. In lavage samples, reduced diversity correlated with lower interleukin 8 concentration and absolute neutrophil count. CONCLUSIONS: In infants with CF, reduced bacterial diversity in the upper and lower airways was strongly associated with the use of prophylactic antibiotics and younger age at the time of sampling; less diversity in the lower airway correlated with lower inflammation on bronchoalveolar lavage. Our findings suggest modification of the respiratory microbiome in infants with CF may influence airway inflammation.Item Bcl6 is a subset-defining transcription factor of lymphoid tissue inducer-like ILC3(Cell Press, 2023) Tachó-Piñot, Roser; Stamper, Christopher T.; King, James I.; Matei-Rascu, Veronika; Richardson, Erin; Li, Zhi; Roberts, Luke B.; Bassett, John W.; Melo-Gonzalez, Felipe; Fiancette, Rémi; Lin, I-Hsuan; Dent, Alexander; Harada, Yohsuke; Finlay, Conor; Mjösberg, Jenny; Withers, David R.; Hepworth, Matthew R.; Microbiology and Immunology, School of MedicineInnate lymphoid cells (ILCs) are tissue-resident effector cells with roles in tissue homeostasis, protective immunity, and inflammatory disease. Group 3 ILCs (ILC3s) are classically defined by the master transcription factor RORγt. However, ILC3 can be further subdivided into subsets that share type 3 effector modules that exhibit significant ontological, transcriptional, phenotypic, and functional heterogeneity. Notably lymphoid tissue inducer (LTi)-like ILC3s mediate effector functions not typically associated with other RORγt-expressing lymphocytes, suggesting that additional transcription factors contribute to dictate ILC3 subset phenotypes. Here, we identify Bcl6 as a subset-defining transcription factor of LTi-like ILC3s in mice and humans. Deletion of Bcl6 results in dysregulation of the LTi-like ILC3 transcriptional program and markedly enhances expression of interleukin-17A (IL-17A) and IL-17F in LTi-like ILC3s in a manner in part dependent upon the commensal microbiota-and associated with worsened inflammation in a model of colitis. Together, these findings redefine our understanding of ILC3 subset biology.Item Bile reflux alters the profile of the gastric mucosa microbiota(Frontiers Media, 2022-09-09) Huang, Gang; Wang, Sui; Wang, Juexin; Tian, Lin; Yu, Yanbo; Zuo, Xiuli; Li, Yanqing; Medical and Molecular Genetics, School of MedicineBackground: Bile reflux can cause inflammation, gastric mucosa atrophy, and diseases such as stomach cancer. Alkaline bile flowing back into the stomach affects the intragastric environment and can alter the gastric bacterial community. We sought to identify the characteristics of the stomach mucosal microbiota in patients with bile reflux. Methods: Gastric mucosal samples were collected from 52 and 40 chronic gastritis patients with and without bile reflux, respectively. The bacterial profile was determined using 16S rRNA gene analysis. Results: In the absence of H. pylori infection, the richness (based on the Sobs and Chao1 indices; P <0.05) and diversity (based on Shannon indices; P <0.05) of gastric mucosa microbiota were higher in patients with bile reflux patients than in those without. There was a marked difference in the microbiota structure between patients with and without bile reflux (ANOSIM, R=0.058, P=0.011). While the genera, Comamonas, Halomonas, Bradymonas, Pseudomonas, Marinobacter, Arthrobacter, and Shewanella were enriched in patients with bile reflux, the genera, Haemophilus, Porphyromonas, and Subdoligranulum, were enriched in those without bile reflux. Conclusion: Our results demonstrate that bile reflux significantly alters the composition of the gastric microbiota.Item Characterization of Vaginal Microbial Community Dynamics in the Pathogenesis of Incident Bacterial Vaginosis, a Pilot Study(Wolters Kluwer, 2023) Elnaggar, Jacob H.; Lammons, John W.; Taylor, Christopher M.; Toh, Evelyn; Ardizzone, Caleb M.; Dong, Amy; Aaron, Kristal J.; Luo, Meng; Tamhane, Ashutosh; Lefkowitz, Elliot J.; Quayle, Alison J.; Nelson, David E.; Muzny, Christina A.; Microbiology and Immunology, School of MedicineBackground: Despite more than 60 years of research, the etiology of bacterial vaginosis (BV) remains controversial. In this pilot study, we used shotgun metagenomic sequencing to characterize vaginal microbial community changes before the development of incident BV (iBV). Methods: A cohort of African American women with a baseline healthy vaginal microbiome (no Amsel criteria, Nugent score 0-3 with no Gardnerella vaginalis morphotypes) were followed for 90 days with daily self-collected vaginal specimens for iBV (≥2 consecutive days of a Nugent score of 7-10). Shotgun metagenomic sequencing was performed on select vaginal specimens from 4 women, every other day for 12 days before iBV diagnosis. Sequencing data were analyzed through Kraken2 and bioBakery 3 workflows, and specimens were classified into community state types. Quantitative polymerase chain reaction was performed to compare the correlation of read counts with bacterial abundance. Results: Common BV-associated bacteria such as G. vaginalis , Prevotella bivia , and Fannyhessea vaginae were increasingly identified in the participants before iBV. Linear modeling indicated significant increases in G. vaginalis and F . vaginae relative abundance before iBV, whereas the relative abundance of Lactobacillus species declined over time. The Lactobacillus species decline correlated with the presence of Lactobacillus phages. We observed enrichment in bacterial adhesion factor genes on days before iBV. There were also significant correlations between bacterial read counts and abundances measured by quantitative polymerase chain reaction. Conclusions: This pilot study characterizes vaginal community dynamics before iBV and identifies key bacterial taxa and mechanisms potentially involved in the pathogenesis of iBV.Item Culex pipiens and Culex restuans larval interactions shape the bacterial communities in container aquatic habitats(Oxford University Press, 2024-02-12) Njoroge, Teresia M.; Berenbaum, May R.; Stone, Christopher M.; Kim, Chang-Hyun; Dunlap, Christopher; Muturi, Ephantus J.; Medical and Molecular Genetics, School of MedicineContainer aquatic habitats host a community of aquatic insects, primarily mosquito larvae that browse on container surface microbial biofilm and filter-feed on microorganisms in the water column. We examined how the bacterial communities in these habitats respond to feeding by larvae of two container-dwelling mosquito species, Culex pipiens and Cx. restuans. We also investigated how the microbiota of these larvae is impacted by intra- and interspecific interactions. Microbial diversity and richness were significantly higher in water samples when mosquito larvae were present, and in Cx. restuans compared to Cx. pipiens larvae. Microbial communities of water samples clustered based on the presence or absence of mosquito larvae and were distinct from those of mosquito larvae. Culex pipiens and Cx. restuans larvae harbored distinct microbial communities when reared under intraspecific conditions and similar microbial communities when reared under interspecific conditions. These findings demonstrate that mosquito larvae play a major role in structuring the microbial communities in container habitats and that intra- and interspecific interactions in mosquito larvae may shape their microbiota. This has important ecological and public health implications since larvae of the two mosquito species are major occupants of container habitats while the adults are vectors of West Nile virus.Item Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation(Frontiers Media, 2022-04-28) Melo-González, Felipe; Sepúlveda-Alfaro, Javiera; Schultz, Bárbara M.; Suazo, Isidora D.; Boone, David L.; Kalergis, Alexis M.; Bueno, Susan M.; Microbiology and Immunology, School of MedicineInfectious diseases are one of the leading causes of morbidity and mortality worldwide, affecting high-risk populations such as children and the elderly. Pathogens usually activate local immune responses at the site of infection, resulting in both protective and inflammatory responses, which may lead to local changes in the microbiota, metabolites, and the cytokine environment. Although some pathogens can disseminate and cause systemic disease, increasing evidence suggests that local infections can affect tissues not directly invaded. In particular, diseases occurring at distal mucosal barriers such as the lung and the intestine seem to be linked, as shown by epidemiological studies in humans. These mucosal barriers have bidirectional interactions based mainly on multiple signals derived from the microbiota, which has been termed as the gut-lung axis. However, the effects observed in such distal places are still incompletely understood. Most of the current research focuses on the systemic impact of changes in microbiota and bacterial metabolites during infection, which could further modulate immune responses at distal tissue sites. Here, we describe how the gut microbiota and associated metabolites play key roles in maintaining local homeostasis and preventing enteric infection by direct and indirect mechanisms. Subsequently, we discuss recent murine and human studies linking infectious diseases with changes occurring at distal mucosal barriers, with particular emphasis on bacterial and viral infections affecting the lung and the gastrointestinal tract. Further, we discuss the potential mechanisms by which pathogens may cause such effects, promoting either protection or susceptibility to secondary infection.Item Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway(Taylor & Francis, 2018-09-05) Monaghan, Tanya; Mullish, Benjamin H.; Patterson, Jordan; Wong, Gane KS; Marchesi, Julian R.; Xu, Huiping; Jilani, Tahseen; Kao, DinaThe mechanisms of efficacy for fecal microbiota transplantation (FMT) in treating recurrent Clostridioides difficile infection (rCDI) remain poorly defined, with restored gut microbiota-bile acid interactions representing one possible explanation. Furthermore, the potential implications for host physiology of these FMT-related changes in gut bile acid metabolism are also not well explored. In this study, we investigated the impact of FMT for rCDI upon signalling through the farnesoid X receptor (FXR)-fibroblast growth factor (FGF) pathway. Herein, we identify that in addition to restoration of gut microbiota and bile acid profiles, FMT for rCDI is accompanied by a significant, sustained increase in circulating levels of FGF19 and reduction in FGF21. These FGF changes were associated with weight gain post-FMT, to a level not exceeding the pre-rCDI baseline. Collectively, these data support the hypothesis that the restoration of gut microbial communities by FMT for rCDI is associated with an upregulated FXR-FGF pathway, and highlight the potential systemic effect of FMT.Item Evaluating the effect of prebiotics on the gut microbiome profile and β cell function in youth with newly diagnosed type 1 diabetes: protocol of a pilot randomized controlled trial(BMC, 2023-08-25) Ismail, Heba M.; Spall, Maria; Evans‑Molina, Carmella; DiMeglio, Linda A.; Pediatrics, School of MedicineIntroduction: Data show that disturbances in the gut microbiota play a role in glucose homeostasis, type 1 diabetes (T1D) risk and progression. The prebiotic high amylose maize starch (HAMS) alters the gut microbiome profile and metabolites favorably with an increase in bacteria producing short chain fatty acids (SCFAs) that have significant anti-inflammatory effects. HAMS also improves glycemia, insulin sensitivity, and secretion in healthy non-diabetic adults. Additionally, a recent study testing an acetylated and butyrylated form of HAMS (HAMS-AB) that further increases SCFA production prevented T1D in a rodent model without adverse safety effects. The overall objective of this human study will be to assess how daily HAMS-AB consumption impacts the gut microbiome profile, SCFA production, β cell heath, function, and glycemia as well as immune responses in newly diagnosed T1D youth. Methods and analysis: We hypothesize that HAMS-AB intake will improve the gut microbiome profile, increase SCFA production, improve β cell health, function and glycemia as well as modulate the immune system. We describe here a pilot, randomized crossover trial of HAMS-AB in 12 newly diagnosed T1D youth, ages 11-17 years old, with residual β cell function. In Aim 1, we will determine the effect of HAMS-AB on the gut microbiome profile and SCFA production; in Aim 2, we will determine the effect of HAMS-AB on β cell health, function and glycemia; and in Aim 3, we will determine the peripheral blood effect of HAMS-AB on frequency, phenotype and function of specific T cell markers. Results will be used to determine the effect-size estimate of using HAMS-AB. We anticipate beneficial effects from a simple, inexpensive, and safe dietary approach. Ethics and dissemination: The Institutional Review Board at Indiana University approved the study protocol. The findings of this trial will be submitted to a peer-reviewed pediatric journal. Abstracts will be submitted to relevant national and international conferences.
- «
- 1 (current)
- 2
- 3
- »