- Browse by Subject
Browsing by Subject "MicroRNAs"
Now showing 1 - 10 of 49
Results Per Page
Sort Options
Item Accurate identification of circRNA landscape and complexity reveals their pivotal roles in human oligodendroglia differentiation(BMC, 2022-02-07) Li, Yangping; Wang, Feng; Teng, Peng; Ku, Li; Chen, Li; Feng, Yue; Yao, Bing; Biostatistics and Health Data Science, School of MedicineBackground: Circular RNAs (circRNAs), a novel class of poorly conserved non-coding RNAs that regulate gene expression, are highly enriched in the human brain. Despite increasing discoveries of circRNA function in human neurons, the circRNA landscape and function in developing human oligodendroglia, the myelinating cells that govern neuronal conductance, remains unexplored. Meanwhile, improved experimental and computational tools for the accurate identification of circRNAs are needed. Results: We adopt a published experimental approach for circRNA enrichment and develop CARP (CircRNA identification using A-tailing RNase R approach and Pseudo-reference alignment), a comprehensive 21-module computational framework for accurate circRNA identification and quantification. Using CARP, we identify developmentally programmed human oligodendroglia circRNA landscapes in the HOG oligodendroglioma cell line, distinct from neuronal circRNA landscapes. Numerous circRNAs display oligodendroglia-specific regulation upon differentiation, among which a subclass is regulated independently from their parental mRNAs. We find that circRNA flanking introns often contain cis-regulatory elements for RNA editing and are predicted to bind differentiation-regulated splicing factors. In addition, we discover novel oligodendroglia-specific circRNAs that are predicted to sponge microRNAs, which co-operatively promote oligodendroglia development. Furthermore, we identify circRNA clusters derived from differentiation-regulated alternative circularization events within the same gene, each containing a common circular exon, achieving additive sponging effects that promote human oligodendroglia differentiation. Conclusions: Our results reveal dynamic regulation of human oligodendroglia circRNA landscapes during early differentiation and suggest critical roles of the circRNA-miRNA-mRNA axis in advancing human oligodendroglia development.Item Aging exaggerates acute-on-chronic alcohol-induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1-C/EBPα-miRNA-223 axis(Wolters Kluwer, 2022) Ren, Ruixue; He, Yong; Ding, Dong; Cui, Aoyuan; Bao, Huarui; Ma, Jing; Hou, Xin; Li, Yu; Feng, Dechun; Li, Xiaoling; Liangpunsakul, Suthat; Gao, Bin; Wang, Hua; Medicine, School of MedicineBackground and aims: Aging exacerbates liver neutrophil infiltration and alcohol-associated liver disease (ALD) in mice and humans, but the underlying mechanisms remain obscure. This study aimed to examine the effect of aging and alcohol consumption on neutrophilic Sirtuin 1 (SIRT1) and microRNA-223 (miR-223), and their contribution to ALD pathogeneses. Approach and results: Young and aged myeloid-specific Sirt1 knockout mice were subjected to chronic-plus-binge ethanol feeding. Blood samples from healthy controls and patients with chronic alcohol drinking who presented with acute intoxication were analyzed. Neutrophilic Sirt1 and miR-223 expression were down-regulated in aged mice compared with young mice. Deletion of the Sirt1 gene in myeloid cells including neutrophils exacerbated chronic-plus-binge ethanol-induced liver injury and inflammation and down-regulated neutrophilic miR-223 expression. Immunoprecipitation experiments revealed that SIRT1 promoted C/EBPα deacetylation by directly interacting with C/EBPα, a key transcription factor that controls miR-223 biogenesis, and subsequently elevated miR-223 expression in neutrophils. Importantly, down-regulation of SIRT1 and miR-223 expression was also observed in circulating neutrophils from middle-aged and elderly subjects compared with those from young individuals. Chronic alcohol users with acute intoxication had a reduction in neutrophilic SIRT1 expression in young and middle-aged patients, with a greater reduction in the latter group. The neutrophilic SIRT1 expression correlated with neutrophilic miR-223 and serum alanine transaminase levels in those patients. Conclusions: Aging increases the susceptibility of alcohol-induced liver injury in mice and humans through the down-regulation of the neutrophilic SIRT1-C/EBPα-miR-223 axis, which could be a therapeutic target for the prevention and/or treatment of ALD.Item Amelioration of Ductular Reaction by Stem Cell Derived Extracellular Vesicles in MDR2 Knockout Mice via Lethal-7 microRNA(Wiley, 2019-02-05) McDaniel, Kelly; Wu, Nan; Zhou, Tianhao; Huang, Li; Sato, Keisaku; Venter, Julie; Ceci, Ludovica; Chen, Demeng; Ramos‐Lorenzo, Sugeily; Invernizzi, Pietro; Bernuzzi, Francesca; Wu, Chaodong; Francis, Heather; Glaser, Shannon; Alpini, Gianfranco; Meng, Fanyin; Medicine, School of MedicineCholangiopathies are diseases that affect cholangiocytes, the cells lining the biliary tract. Liver stem cells (LSCs) are able to differentiate into all cells of the liver and possibly influence the surrounding liver tissue by secretion of signaling molecules. One way in which cells can interact is through secretion of extracellular vesicles (EVs), which are small membrane-bound vesicles that contain proteins, microRNAs (miRNAs), and cytokines. We evaluated the contents of liver stem cell–derived EVs (LSCEVs), compared their miRNA contents to those of EVs isolated from hepatocytes, and evaluated the downstream targets of these miRNAs. We finally evaluated the crosstalk among LSCs, cholangiocytes, and human hepatic stellate cells (HSCs). We showed that LSCEVs were able to reduce ductular reaction and biliary fibrosis in multidrug resistance protein 2 (MDR2)−/− mice. Additionally, we showed that cholangiocyte growth was reduced and HSCs were deactivated in LSCEV-treated mice. Evaluation of LSCEV contents compared with EVs derived from hepatocytes showed a large increase in the miRNA, lethal-7 (let-7). Further evaluation of let-7 in MDR2−/− mice and human primary sclerosing cholangitis samples showed reduced levels of let-7 compared with controls. In liver tissues and isolated cholangiocytes, downstream targets of let-7 (identified by ingenuity pathway analysis), Lin28a (Lin28 homolog A), Lin28b (Lin28 homolog B), IL-13 (interleukin 13), NR1H4 (nuclear receptor subfamily 1 group H member 4) and NF-κB (nuclear factor kappa B), are elevated in MDR2−/− mice, but treatment with LSCEVs reduced levels of these mediators of ductular reaction and biliary fibrosis through the inhibition of NF-κB and IL-13 signaling pathways. Evaluation of crosstalk using cholangiocyte supernatants from LSCEV-treated cells on cultured HSCs showed that HSCs had reduced levels of fibrosis and increased senescence. Conclusion: Our studies indicate that LSCEVs could be a possible treatment for cholangiopathies or could be used for target validation for future therapies.Item Author Correction: Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression(Nature, 2020-06-03) Rupaimoole, Rajesha; Wu, Sherry Y.; Pradeep, Sunila; Ivan, Cristina; Pecot, Chad V.; Gharpure, Kshipra M.; Nagaraja, Archana S.; Armaiz-Pena, Guillermo N.; McGuire, Michael; Zand, Behrouz; Dalton, Heather J.; Filant, Justyna; Miller, Justin Bottsford; Lu, Chunhua; Sadaoui, Nouara C.; Mangala, Lingegowda S.; Taylor, Morgan; van den Beucken, Twan; Koch, Elizabeth; Rodriguez-Aguayo, Cristian; Huang, Li; Bar-Eli, Menashe; Wouters, Bradly G.; Radovich, Milan; Ivan, Mircea; Calin, George A.; Zhang, Wei; Lopez-Berestein, Gabriel; Sood, Anil K.; Medicine, School of MedicineThis Article contains an error in Fig. 4. During the preparation of Fig. 4d, the image representing showing E-CADHERIN expression under hypoxia conditions in A2780 cells was inadvertently taken from the image in Supplementary Fig. 15C showing E-CADHERIN expression under hypoxia conditions in SKOV3 cells. The correct version of Fig. 4 is shown below. The error has not been corrected in the PDF or HTML versions of the Article.Item Bioinformatics analysis of the potentially functional circRNA-miRNA-mRNA network in breast cancer(Public Library of Science, 2024-04-18) Erdogan, Cihat; Suer, Ilknur; Kaya, Murat; Ozturk, Sukru; Aydin, Nizamettin; Kurt, Zeyneb; Medical and Molecular Genetics, School of MedicineBreast cancer (BC) is the most common cancer among women with high morbidity and mortality. Therefore, new research is still needed for biomarker detection. GSE101124 and GSE182471 datasets were obtained from the Gene Expression Omnibus (GEO) database to evaluate differentially expressed circular RNAs (circRNAs). The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases were used to identify the significantly dysregulated microRNAs (miRNAs) and genes considering the Prediction Analysis of Microarray classification (PAM50). The circRNA-miRNA-mRNA relationship was investigated using the Cancer-Specific CircRNA, miRDB, miRTarBase, and miRWalk databases. The circRNA-miRNA-mRNA regulatory network was annotated using Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. The protein-protein interaction network was constructed by the STRING database and visualized by the Cytoscape tool. Then, raw miRNA data and genes were filtered using some selection criteria according to a specific expression level in PAM50 subgroups. A bottleneck method was utilized to obtain highly interacted hub genes using cytoHubba Cytoscape plugin. The Disease-Free Survival and Overall Survival analysis were performed for these hub genes, which are detected within the miRNA and circRNA axis in our study. We identified three circRNAs, three miRNAs, and eighteen candidate target genes that may play an important role in BC. In addition, it has been determined that these molecules can be useful in the classification of BC, especially in determining the basal-like breast cancer (BLBC) subtype. We conclude that hsa_circ_0000515/miR-486-5p/SDC1 axis may be an important biomarker candidate in distinguishing patients in the BLBC subgroup of BC.Item Cancer impacts microRNA expression, release and function in cardiac and skeletal muscle(American Association for Cancer Research, 2014-08-15) Chen, Daohong; Goswami, Chirayu P; Burnett, Riesa M; Anjanappa, Manjushree; Bhat-Nakshatri, Poornima; Muller, William; Nakshatri, Harikrishna; Department of Surgery, IU School of MedicineCirculating microRNAs are emerging as important biomarkers of various diseases including cancer. Intriguingly, circulating levels of several microRNAs are lower in cancer patients compared with healthy individuals. In this study, we tested the hypothesis that a circulating microRNA might serve as a surrogate of the effects of cancer on microRNA expression or release in distant organs. Here we report that circulating levels of the muscle-enriched miR-486 is lower in breast cancer patients compared with healthy individuals, and that this difference is replicated faithfully in MMTV-PyMT and MMTV-Her2 transgenic mouse models of breast cancer. In tumor-bearing mice, levels of miR-486 were relatively reduced in muscle, where there was elevated expression of the miR-486 target genes PTEN and FOXO1A and dampened signaling through the PI3K/AKT pathway. Skeletal muscle expressed lower levels of the transcription factor MyoD which controls miR-486 expression. Conditioned media (CM) obtained from MMTV-PyMT and MMTV-Her2/Neu tumor cells cultured in vitro was sufficient to elicit reduced levels of miR-486 and increased PTEN and FOXO1A expression in C2C12 murine myoblasts. Cytokine analysis implicated TNFα and four additional cytokines as mediators of miR-486 expression in CM-treated cells. Since miR-486 is a potent modulator of PI3K/AKT signaling and the muscle-enriched transcription factor network in cardiac/skeletal muscle, our findings implicated TNFα-dependent miRNA circuitry in muscle differentiation and survival pathways in cancer.Item Carboplatin with Decitabine Therapy, in Recurrent Platinum Resistant Ovarian Cancer, Alters Circulating miRNAs Concentrations: A Pilot Study(PLOS, 2015-10-20) Benson, Eric A.; Skaar, Todd C.; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela; Department of Medicine, IU School of MedicineOBJECTIVE: Plasma miRNAs represent potential minimally invasive biomarkers to monitor and predict outcomes from chemotherapy. The primary goal of the current study-consisting of patients with recurrent, platinum-resistant ovarian cancer-was to identify the changes in circulating miRNA concentrations associated with decitabine followed by carboplatin chemotherapy treatment. A secondary goal was to associate clinical response with changes in circulating miRNA concentration. METHODS: We measured miRNA concentrations in plasma samples from 14 patients with platinum-resistant, recurrent ovarian cancer enrolled in a phase II clinical trial that were treated with a low dose of the hypomethylating agent (HMA) decitabine for 5 days followed by carboplatin on day 8. The primary endpoint was to determine chemotherapy-associated changes in plasma miRNA concentrations. The secondary endpoint was to correlate miRNA changes with clinical response as measured by progression free survival (PFS). RESULTS: Seventy-eight miRNA plasma concentrations were measured at baseline (before treatment) and at the end of the first cycle of treatment (day 29). Of these, 10 miRNAs (miR-193a-5p, miR-375, miR-339-3p, miR-340-5p, miR-532-3p, miR-133a-3p, miR-25-3p, miR-10a-5p, miR-616-5p, and miR-148b-5p) displayed fold changes in concentration ranging from -2.9 to 4 (p<0.05), in recurrent platinum resistant ovarian cancer patients, that were associated with response to decitabine followed by carboplatin chemotherapy. Furthermore, lower concentrations of miR-148b-5p after this chemotherapy regimen were associated (P<0.05) with the PFS. CONCLUSIONS: This is the first report demonstrating altered circulating miRNA concentrations following a combination platinum plus HMA chemotherapy regiment. In addition, circulating miR-148b-5p concentrations were associated with PFS and may represent a novel biomarker of therapeutic response, with this chemotherapy regimen, in women with recurrent, drug-resistant ovarian cancer.Item Cardioprotection vs. regeneration: the case of extracellular vesicle-derived microRNAs(Springer, 2021-03-19) Wollert, Kai C.; Field, Loren J.; Pediatrics, School of MedicineItem The Chromosome 13 Conundrum in Multiple Myeloma(American Association for Cancer Research, 2020-06-22) Walker, Brian A.; Medicine, School of MedicineIn this issue of Blood Cancer Discovery, Chesi and colleagues have performed a series of mouse experiments, combined with patient sample analysis, to delineate the role of del(13) in multiple myeloma. They identify loss of the miRNA cluster MIR15A/16-1 as critical for myelomagenesis and progression of disease.Item Differential miRNA Expression in Cells and Matrix Vesicles in Vascular Smooth Muscle Cells from Rats with Kidney Disease(PLOS, 2015-06-26) Chaturvedi, Praneet; Chen, Neal X.; O’Neill, Kalisha; McClintick, Jeanette N.; Moe, Sharon M.; Janga, Sarath Chandra; Department of BioHealth Informatics, School of Informatics and ComputingVascular calcification is a complex process and has been associated with aging, diabetes, chronic kidney disease (CKD). Although there have been several studies that examine the role of miRNAs (miRs) in bone osteogenesis, little is known about the role of miRs in vascular calcification and their role in the pathogenesis of vascular abnormalities. Matrix vesicles (MV) are known to play in important role in initiating vascular smooth muscle cell (VSMC) calcification. In the present study, we performed miRNA microarray analysis to identify the dysregulated miRs between MV and VSMC derived from CKD rats to understand the role of post-transcriptional regulatory networks governed by these miRNAs in vascular calcification and to uncover the differential miRNA content of MV. The percentage of miRNA to total RNA was increased in MV compared to VSMC. Comparison of expression profiles of miRNA by microarray demonstrated 33 miRs to be differentially expressed with the majority (~ 57%) of them down-regulated. Target genes controlled by differentially expressed miRNAs were identified utilizing two different complementary computational approaches Miranda and Targetscan to understand the functions and pathways that may be affected due to the production of MV from calcifying VSMC thereby contributing to the regulation of genes by miRs. We found several processes including vascular smooth muscle contraction, response to hypoxia and regulation of muscle cell differentiation to be enriched. Signaling pathways identified included MAP-kinase and wnt signaling that have previously been shown to be important in vascular calcification. In conclusion, our results demonstrate that miRs are concentrated in MV from calcifying VSMC, and that important functions and pathways are affected by the miRs dysregulation between calcifying VSMC and the MV they produce. This suggests that miRs may play a very important regulatory role in vascular calcification in CKD by controlling an extensive network of post-transcriptional targets.