- Browse by Subject
Browsing by Subject "MicroCT"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Importance of Connexin 43 in Enamel Development and Mineralization(Frontiers Media, 2018-06-26) Al-Ansari, Sali; Jalali, Rozita; Plotkin, Lilian I.; Bronckers, Antonius L. J. J.; DenBesten, Pamela; Zhang, Yan; Raber-Durlacher, Judith E.; Lange, Jan de; Rozema, Frederik R.; Anatomy and Cell Biology, School of MedicineDuring enamel development, formation of hydroxyapatite crystals and regulation of pH in the enamel matrix require massive transport of ions. Both ameloblasts and adjacent dental epithelial cells in the stellate reticulum co-express several transmembrane cotransporters/ion-exchangers for transport of ions across plasma membranes. Gap junctions (GJs) enable intercellular exchanges of ions between neighboring cells. This suggests that the ameloblasts and other cell layers of the enamel organ, form a functional unit. During the bell stage of tooth formation, the non-ameloblast dental epithelium highly expresses the Na-K-Cl cotransporter (Nkcc1). Nkcc1-null mice are associated with enamel hypomineralization and increased expression of GJ protein connexin 43 (Cx43), suggesting that reduced ion transport in the Nkcc1-null mouse is in part compensated by increased intercellular ion transport through GJs. To understand the role of GJs in ion transport and its effect on pH regulation, we examined in a mouse strain in which Cx43 was ablated selectively in DMP1 expressing cells (Cx43flox/flox mice crossed with DMP1-8kb-Cre mice), including ameloblasts. Micro-CT analysis showed that the mineral density at late maturation stage incisal enamel of the Cx43-null mice was 10% less than in controls, whereas that in dentin was unchanged. Maturation stage ameloblasts of mice lacking the pH regulating sodium/bicarbonate transporter NBCe1 (Nbce1-null), or chloride channel Cftr (Cftr-null) were found to have increased Cx43-immunostaining. These results support the possibility that GJs in the ameloblast-papillary complex at the maturation stage contribute to ion transport by enabling passage of ions directly from cells of the papillary layer into ameloblast layer. Increasing the number of GJs may partly compensate the reduction of ion-cotransporters and ion exchangers in dental epithelium.Item Multi-scale analysis of morphology, mechanics, and composition of collagen in murine osteogenesis imperfecta(2013-11-06) Bart, Zachary Ryan; Wallace, Joseph; Na, Sungsoo; Yokota, Hiroki, 1955-; Schild, John H.Osteogenesis imperfecta is a rare congenital disease commonly characterized by brittle bones caused by mutations in the genes encoding Type I collagen, the single most abundant protein produced by the body. The murine model (oim) exists as a natural mutation of this protein, converting its heterotrimeric structure of two Col1a1 molecules and a single Col1a2 molecule into homotrimers composed of only the former. This defect impacts bone mechanical integrity, greatly weakening their structure. Femurs from male wild type (WT), heterozygous (oim/+), and homozygous (oim/oim) mice, all at 12 weeks of age, were assessed using assays at multiple length scales with minimal sample processing to ensure a near-physiological state. Atomic force microscopy (AFM) demonstrated detectable differences in the organization of collagen at the nanometer scale that may partially attribute to alterations in material and structural behavior obtained through mechanical testing and reference point indentation (RPI). Changes in geometric and chemical structure through the use of µ-Computed Tomography and Raman spectroscopy respectively indicate a smaller, brittle phenotype caused by oim. Changes within the periodic D-spacing of collagen point towards a reduced mineral nucleation site, supported by reduced mineral crystallinity, resulting in altered material and structural behavior in oim/oim mice. Multi-scale analyses of this nature offer much in assessing how molecular changes can compound to create a degraded, brittle phenotype.