- Browse by Subject
Browsing by Subject "Methylation"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient(Oxford Academic, 1996-04) Sun, Yongming; Nicholls, Robert D.; Butler, Merlin G.; Saitoh, Shinji; Hainline, Bryan E.; Palmer, Catherine G.; Medical and Molecular Genetics, School of MedicineA patient with Prader-Willi syndrome (PWS) was found to carry a de novo balanced reciprocal translocation, t(15;19)(q12;q13.41), which disrupted the small nuclear ribonucleoprotein N (SNRPN) locus. The translocation chromosome 15 was found to be paternal in origin. Uniparental disomy and abnormal DNA methylation were ruled out. The translocation breakpoint was found to have occurred between exon 0 (second exon) and 1 (third exon) of the SNRPN locus outside of the SmN open reading frame (ORF), which is intact. The transcriptional activities of ZNF127, IPW, PAR-1, and PAR-5 were detected with RT-PCR from fibroblasts of the patient, suggesting that these genes may not play a significant role in the PWS phenotype in this patient. Transcription from the first two exons and last seven exons of the SNRPN gene was also detected with RT-PCR; however, the complete mRNA (10 exons) was not detected. Thus, the PWS phenotype in the patient is likely to be the result of disruption of the SNRPN locus.Item Characterization of protein arginine methyltransferase of TgPRMT5 in Toxoplasma gondii(Springer Nature, 2019-05-08) Liu, Min; Li, Fen-Xiang; Li, Chun-Yuan; Li, Xiao-Cong; Chen, Long-Fei; Wu, Kun; Yang, Pei-Liang; Lai, Zhi-Fa; Liu, Ting-kai; Sullivan, William J., Jr.; Cui, Liwang; Chen, Xiao-Guang; Pharmacology and Toxicology, School of MedicineBACKGROUND: Protein arginine methylation is a prevalent post-translational modification. The protein arginine methyltransferase family (PRMT) is involved in many cellular processes in eukaryotes, including transcriptional regulation, epigenetic regulation, RNA metabolism, and DNA damage repair. Toxoplasma gondii, an opportunistic protozoan parasite, encodes five conserved PRMTs. PRMT5 is thought to be responsible for substantial PRMT activity in T. gondii; however, it has not yet been characterized. METHODS: We tagged the 3' end of the endogenous TgPRMT5 genomic locus with sequence encoding a 3X hemagglutinin (HA) epitope. IFA and WB were performed to check the expression and subcellular localization of TgPRMT5 in tachyzoites and bradyzoites. In vitro methylation assays were performed to determine whether endogenous TgPRMT5 has arginine methyltransferase activity. RESULTS: IFA and WB results showed that T. gondii PRMT5 (TgPRMT5) was localized in the cytoplasm in the tachyzoite stage; however, it shifts largely to the nuclear compartment in the bradyzoite stage. The in vitro methylation showed that TgPRMT5 has authentic type II PRMT activity and forms monomethylarginines and symmetric dimethylarginines. CONCLUSIONS: We determined the expression and cellular localization of TgPRMT5 in tachyzoites and bradyzoites and confirmed its type II PRMT activity. We demonstrated the major changes in expression and cellular localization of TgPRMT5 during the tachyzoite and bradyzoite stages in T. gondii. Our findings suggest that TgPRMT5 protein may be involved in tachyzoite-bradyzoite transformation.Item CXXC finger protein 1 upregulates maintenance DNA methylation(2007) Butler, Jill S.Item Epigenetics: Through the pediatric urology looking glass(Elsevier, 2022) Bagli, Darius; Fossum, Magdalena; Harper, Luke; Herbst, Katherine; Nieuwhof-Leppink, Anka; Beckers, Goedele M. A.; Kalfa, Nicolas; ESPU Research Committee; Urology, School of MedicineItem FMRP Regulates the Nuclear Export of Adam9 and Psen1 mRNAs: Secondary Analysis of an N 6 -Methyladenosine Dataset(Nature Publishing group, 2020-07-01) Westmark, Cara J.; Maloney, Bryan; Alisch, Reid S.; Sokol, Deborah K.; Lahiri, Debomoy K.; Psychiatry, School of MedicineFragile X mental retardation protein (FMRP) binds to and regulates the translation of amyloid-β protein precursor (App) mRNA, but the detailed mechanism remains to be determined. Differential methylation of App mRNA could underlie FMRP binding, message localization and translation efficiency. We sought to determine the role of FMRP and N6-methyladeonsine (m6A) on nuclear export of App mRNA. We utilized the m6A dataset by Hsu and colleagues to identify m6A sites in App mRNA and to determine if the abundance of message in the cytoplasm relative to the nucleus is altered in Fmr1 knockout mouse brain cortex. Given that processing of APP to Aβ and soluble APP alpha (sAPPα) contributes to disease phenotypes, we also investigated whether Fmr1KO associates with nuclear export of the mRNAs for APP protein processing enzymes, including β-site amyloid cleaving enzyme (Bace1), A disintegrin and metalloproteinases (Adams), and presenilins (Psen). Fmr1KO did not alter the nuclear/cytoplasmic abundance of App mRNA. Of 36 validated FMRP targets, 35 messages contained m6A peaks but only Agap2 mRNA was selectively enriched in Fmr1KO nucleus. The abundance of the APP processing enzymes Adam9 and Psen1 mRNA, which code for a minor alpha-secretase and gamma-secretase, respectively, were selectively enriched in wild type cytoplasm.Item Improved Pathologic response to chemoradiation in MGMT methylated locally advanced rectal cancer(Elsevier, 2023-07-24) Jensen, Garrett L.; Pourfarrokh, Niloufar; Volz, Marcus; Morales, Linden L.; Walker, Kimberly; Hammonds, Kendall P.; El-Ghamry, Moataz; Wong, Lucas; Hodjat, Parsa; Castro, Eduardo; Rao, Arundhati; Jhavar, Sameer G.; Radiation Oncology, School of MedicineBackground and purpose: With the growing interest in total neoadjuvant treatment for locally advanced rectal adenocarcinoma (LARC) there is an urgent unmet need to identify predictive markers of response to long-course neoadjuvant concurrent chemoradiotherapy (LCRT). O6-Methylguanine (O6-MG)-DNA-methyltransferase (MGMT) gene methylation has been associated in some malignancies with response to concurrent chemoradiotherapy. We attempted to find if pathologic response to LCRT was associated with MGMT promoter hypermethylation (MGMTh). Materials and methods: Patients were identified with LARC, available pre-treatment biopsy specimens, and at least 1 year of follow-up who received LCRT followed by surgical resection within 6 months. Biopsies were tested for MGMTh using a Qiagen pyrosequencing kit (Catalog number 970061). The primary outcome of LCRT responsiveness was based on tumor regression grade (TRG), with grades of 0-1 considered to have excellent response and grades of 2-3 considered to be non-responders. Secondary outcomes included overall survival (OS) and recurrence free survival (RFS). Results: Of 96 patients who met inclusion criteria, 76 had samples which produced reliable assay results. MGMTh corresponded with higher grade and age of the biopsy specimen. The percentage of responders to LCRT was higher amongst the MGMTh patients than the MGMTn patients (60.0% vs 27.5%, p value = 0.0061). MGMTh was not significantly associated with improved OS (2-year OS of 96.0% vs 98.0%, p = 0.8102) but there was a trend for improved RFS (2-year RFS of 87.6% vs 74.2%, p = 0.0903). Conclusion: Significantly greater tumor regression following LCRT was seen in MGMTh LARC. Methylation status may help identify good candidates for close observation without surgery following LCRT.Item Interaction of genetic variants and methylation in transcript-level expression regulation in Alzheimer's disease by multi-omics data analysis(Springer Nature, 2025-02-20) Han, Seonggyun; Cho, Soo-ah; Choi, Wongyung; Eilbeck, Karen; Coon, Hilary; Nho, Kwangsik; Lee, Younghee; Radiology and Imaging Sciences, School of MedicineBackground: Alzheimer's disease (AD) presents a significant public health problem and major cause of dementia. Not only genetic but epigenetic factors contribute to complex and heterogeneous molecular mechanisms underlying AD risk; in particular, single nucleotide polymorphisms (SNPs) and DNA methylation can lead to dysregulation of gene expression in the AD brain. Each of these regulators has been independently studied well in AD progression, however, their interactive roles, particularly when they are located differently, still remains unclear. Here, we aimed to explore the interplay between SNPs and DNA methylation in regulating transcript expression levels in the AD brain through an integrative analysis of whole-genome sequencing, RNA-seq, and methylation data measured from the dorsolateral prefrontal cortex. Results: We identified 179 SNP-methylation combination pairs that showed statistically significant interactions associated with the expression of 67 transcripts (63 unique genes), enriched in functional pathways, including immune-related and post-synaptic assembly pathways. Particularly, a number of HLA family genes (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB5, HLA-DPA1, HLA-K, HLA-DQB1, and HLA-DMA) were observed as having expression changes associated with the interplay. Conclusions: Our findings especially implicate immune-related pathways as targets of these regulatory interactions. SNP-methylation interactions may thus contribute to the molecular complexity underlying immune-related pathogenies in AD patients. Our study provides a new molecular knowledge in the context of the interplay between genetic and epigenetic regulations, in that it concerns transcript expression status in AD.Item Lysine Methylation Regulators Moonlighting outside the Epigenome(Elsevier, 2019-09-19) Cornett, Evan M.; Ferry, Laure; Defossez, Pierre-Antoine; Rothbart, Scott B.; Biochemistry and Molecular Biology, School of MedicineLandmark discoveries made nearly two decades ago identified known transcriptional regulators as histone lysine methyltransferases; since then the field of lysine methylation signaling has been dominated by studies of how this small chemical posttranslational modification regulates gene expression and other chromatin-based processes. However, recent advances in mass spectrometry-based proteomics have revealed that histones are just a subset of the thousands of eukaryotic proteins marked by lysine methylation. As the writers, erasers, and readers of histone lysine methylation are emerging as a promising therapeutic target class for cancer and other diseases, a key challenge for the field is to define the full spectrum of activities for these proteins. Here we summarize recent discoveries implicating non-histone lysine methylation as a major regulator of diverse cellular processes. We further discuss recent technological innovations that are enabling the expanded study of lysine methylation signaling. Collectively, these findings are shaping our understanding of the fundamental mechanisms of non-histone protein regulation through this dynamic and multi-functional posttranslational modification.Item Mechanisms of transcriptional regulation in the maintenance of β cell function(2015-05-08) Maganti Vijaykumar, Aarthi; Mirmira, Raghavendra G.; Thurmond, Debbie C.; Herring, Paul B.; Evans-Molina, Carmella; Mosley, Amber L.The islet β cell is central to the maintenance of glucose homeostasis as the β cell is solely responsible for the synthesis of Insulin. Therefore, better understanding of the molecular mechanisms governing β cell function is crucial to designing therapies for diabetes. Pdx1, the master transcription factor of the β cell, is required for the synthesis of proteins that maintain optimal β cell function such as Insulin and glucose transporter type 2. Previous studies showed that Pdx1 interacts with the lysine methyltransferase Set7/9, relaxing chromatin and increasing transcription. Because Set7/9 also methylates non-histone proteins, I hypothesized that Set7/9-mediated methylation of Pdx1 increases its transcriptional activity. I showed that recombinant and cellular Pdx1 protein is methylated at two lysine residues, Lys123 and Lys131. Lys131 is involved in Set7/9 mediated augmented transactivation of Pdx1 target genes. Furthermore, β cell-specific Set7/9 knockout mice displayed glucose intolerance and impaired insulin secretion, accompanied by a reduction in the expression of Pdx1 target genes. Our results indicate a previously unappreciated role for Set7/9 in the maintenance of Pdx1 activity and β cell function. β cell function is regulated on both the transcriptional and translational levels. β cell function is central to the development of type 1 diabetes, a disease wherein the β cell is destroyed by immune cells. Although the immune system is considered the primary instigator of the disease, recent studies suggest that defective β cells may initiate the autoimmune response. I tested the hypothesis that improving β cell function would reduce immune infiltration of the islet in the NOD mouse, a mouse model of spontaneous type 1 diabetes. Prediabetic NOD mice treated with pioglitazone, a drug that improves β cell function, displayed an improvement in β cell function, a reduction in β cell death, accompanied by reductions in β cell autoimmunity, indicating that β cell dysfunction assists in the development of type 1 diabetes. Therefore, understanding the molecular mechanisms involved in β cell function is essential for the development of therapies for diabetes.Item Microvesicle-mediated transfer of DNMT proteins results in recipient cell immunosuppression(Elsevier, 2023) Harkless, Ryan; Singh, Kanhaiya; Christman, John; McCarty, Adara; Sen, Chandan; Jalilvand, Anahita; Wisler, Jon; Surgery, School of MedicineIntroduction: Patients with sepsis exhibit significant, persistent immunologic dysfunction. Evidence supports the hypothesis that epigenetic regulation of key cytokines plays an important role in this dysfunction. In sepsis, circulating microvesicles (MVs) containing elevated levels of DNA methyltransferase (DNMT) mRNA cause gene methylation and silencing in recipient cells. We sought to examine the functional role of MV DNMT proteins in this immunologic dysfunction. Methods: In total, 33 patients were enrolled within 24 h of sepsis diagnosis (23 sepsis, 10 critically ill controls). Blood and MVs were collected on days 1, 3, and 5 of sepsis, and protein was isolated from the MVs. Levels of DNMT protein and activity were quantified. MVs were produced in vitro by stimulating naïve monocytes with lipopolysaccharide. Methylation was assessed using bisulfate site-specific qualitative real-time polymerase chain reaction. Results: The size of MVs in the patients with sepsis decreased from days 1 to 5 compared to the control group. Circulating MVs contained significantly higher levels of DNMT 1 and 3A, protein. We recapitulated the production of these DNMT-containing MVs in vitro by treating monocytes with lipopolysaccharide. We found that exposing naïve monocytes to these MVs resulted in increased promoter methylation of tumor necrosis factor alpha. Conclusions: An analysis of the isolated MVs revealed higher levels of DNMT proteins in septic patients than those in nonseptic patients. Exposing naïve monocytes to DNMT-containing MVs produced in vitro resulted in hypermethylation of tumor necrosis factor alpha, a key cytokine implicated in postsepsis immunosuppression. These results suggest that DNMT-containing MVs cause epigenetic changes in recipient cells. This study highlights a novel role for MVs in the immune dysfunction of patients with sepsis.