ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Methylamines"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    (Biphenyl-4-yl)methylammonium Chlorides: Potent Anticonvulsants That Modulate Na+ Currents
    (ACS, 2013) Lee, Hyosung; Park, Ki Duk; Yang, Xiao-Fang; Dustrude, Erik T.; Wilson, Sarah M.; Khanna, Rajesh; Kohn, Harold; Pharmacology and Toxicology, School of Medicine
    We have reported that compounds containing a biaryl linked unit (Ar-X-Ar') modulated Na(+) currents by promoting slow inactivation and fast inactivation processes and by inducing frequency (use)-dependent inhibition of Na(+) currents. These electrophysiological properties have been associated with the mode of action of several antiepileptic drugs. In this study, we demonstrate that the readily accessible (biphenyl-4-yl)methylammonium chlorides (compound class B) exhibited a broad range of anticonvulsant activities in animal models, and in the maximal electroshock seizure test the activity of (3'-trifluoromethoxybiphenyl-4-yl)methylammonium chloride (8) exceeded that of phenobarbital and phenytoin upon oral administration to rats. Electrophysiological studies of 8 using mouse catecholamine A-differentiated cells and rat embryonic cortical neurons confirmed that 8 promoted slow and fast inactivation in both cell types but did not affect the frequency (use)-dependent block of Na(+) currents.
  • Loading...
    Thumbnail Image
    Item
    Plant-Based Diets, the Gut Microbiota, and Trimethylamine N-Oxide Production in Chronic Kidney Disease: Therapeutic Potential and Methodological Considerations
    (Elsevier, 2021) Wiese, Gretchen N.; Biruete, Annabel; Moorthi, Ranjani N.; Moe, Sharon M.; Lindemann, Stephen R.; Hill Gallant, Kathleen M.; Anatomy, Cell Biology and Physiology, School of Medicine
    High circulating trimethylamine-N-oxide (TMAO) is associated with an increased risk of cardiovascular disease and mortality in people with chronic kidney disease (CKD). In individuals with CKD, reduced kidney function leads to decreased excretion of TMAO, which results in accumulation in the circulation. Higher circulating TMAO has been linked to higher intake of animal-based foods in omnivorous diets. Thus, plant-based diets have been suggested as an intervention to slow the progression of CKD and reduce cardiovascular risk, perhaps explained in part by reduced TMAO production. This article reviews the current evidence on plant-based diets as a dietary intervention to decrease gut-derived TMAO production in patients with CKD, while highlighting methodological issues that present challenges to advancing research and subsequent translation of this approach. Overall, we find that plant-based diets are promising for reducing gut-derived TMAO production in patients with CKD but that further interventional studies are warranted.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University