- Browse by Subject
Browsing by Subject "Methionine"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A conserved female-specific larval requirement for MtnB function facilitates sex separation in multiple species of disease vector mosquitoes(BMC, 2021-06-26) Mysore, Keshava; Sun, Longhua; Roethele, Joseph B.; Li, Ping; Igiede, Jessica; Misenti, Joi K.; Duman‑Scheel, Molly; Medical and Molecular Genetics, School of MedicineBackground: Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. Results: Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. Conclusions: The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects.Item Impact of the Association Between PNPLA3 Genetic Variation and Dietary Intake on the Risk of Significant Fibrosis in Patients With NAFLD(Wolters Kluwer, 2021) Vilar-Gomez, Eduardo; Pirola, Carlos Jose; Sookoian, Silvia; Wilson, Laura A.; Belt, Patricia; Liang, Tiebing; Liu, Wanqing; Chalasani, Naga; Medicine, School of MedicineIntroduction: This study explored the relationship between patatin-like phospholipase domain-containing 3 gene (PNPLA3 rs738409), nutrient intake, and liver histology severity in patients with nonalcoholic fatty liver disease (NAFLD). Methods: PNPLA3-rs738409 variant was genotyped in 452 non-Hispanic whites with histologically confirmed NAFLD who completed Food Frequency Questionnaire within 6 months of their liver biopsy. The fibrosis severity on liver histology was the outcome of interest. Results: The distribution of PNPLA3 genotypes was CC: 28%, CG: 46%, and GG: 25%. High-carbohydrate (% of energy/d) intake was positively associated (adjusted [Adj] odds ratio [OR]: 1.03, P < 0.01), whereas higher n-3 polyunsaturated fatty acids (n-3 PUFAs) (g/d) (Adj. OR: 0.17, P < 0.01), isoflavones (mg/d) (Adj. OR: 0.74, P = 0.049), methionine (mg/d) (Adj. OR: 0.32, P < 0.01), and choline (mg/d) (Adj. OR: 0.32, P < 0.01) intakes were inversely associated with increased risk of significant fibrosis (stage of fibrosis ≥2). By using an additive model of inheritance, our moderation analysis showed that PNPLA3 rs738409 significantly modulates the relationship between carbohydrate (%), n-3 PUFAs, total isoflavones, methionine, and choline intakes and fibrosis severity in a dose-dependent, genotype manner. These dietary factors tended to have a larger and significant effect on fibrosis severity among rs738409 G-allele carriers. Associations between significant fibrosis and carbohydrates (Adj. OR: 1.04, P = 0.019), n-3 PUFAs (Adj. OR: 0.16, P < 0.01), isoflavones (Adj. OR: 0.65, P = 0.025), methionine (Adj. OR: 0.30, P < 0.01), and total choline (Adj. OR: 0.29, P < 0.01) intakes remained significant only among rs738409 G-allele carriers. Discussion: This gene-diet interaction study suggests that PNPLA3 rs738409 G-allele might modulate the effect of specific dietary nutrients on risk of fibrosis in patients with NAFLD.Item Intake of methyl-related nutrients and risk of pancreatic cancer in a population-based case-control study in Minnesota(Springer Nature, 2018-08) Marley, Andrew R.; Fan, Hao; Hoyt, Margaret L.; Anderson, Kristin E.; Zhang, Jianjun; Epidemiology, School of Public HealthBACKGROUND/OBJECTIVES: Folate, vitamin B6, vitamin B12, and methionine are involved in DNA synthesis and methylation and thus may modulate pancreatic cancer risk. We investigated these associations in a population-based case-control study conducted in 1994-1998. SUBJECTS/METHODS: Cases (n = 150) were identified from all hospitals in the metropolitan areas of the Twin Cities and the Mayo Clinic, Minnesota. Controls (n = 459) were selected randomly from the general population and were frequency matched to cases by age, sex, and race. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for risk of pancreatic cancer in relation to intake of nutrients considered. RESULTS: Dietary intake of folate was associated with a reduced pancreatic cancer risk [OR (95% CI) for quartile (Q) 4 vs. Q1: 0.31 (0.12-0.78)]. A composite score (range from 2 to 8), reflecting combined dietary intake of folate and vitamin B6, was also inversely associated with pancreatic cancer risk [OR (95% CI) for Q4 vs. Q1: 0.24 (0.08-0.70)]. Null associations were found for intake of vitamin B12 and methionine. CONCLUSIONS: Dietary folate intake was associated with a reduced pancreatic cancer risk, and this association became stronger when dietary intake of folate and vitamin B6 was combined in analysis.Item Maternal High-Fat Diet Disrupted One-Carbon Metabolism in Offspring, contributing to Nonalcoholic Fatty Liver Disease(Wiley, 2021) Peng, Hui; Xu, Huiting; Wu, Jie; Li, Jiangyuan; Zhou, Yi; Ding, Zehuan; Siwko, Stefan K.; Yuan, Xianglin; Schalinske, Kevin L.; Alpini, Gianfranco; Zhang, Ke K.; Xie, Linglin; Medicine, School of MedicineBackground & aims: Pregnant women may transmit their metabolic phenotypes to their offspring, enhancing the risk for nonalcoholic fatty liver disease (NAFLD); however, the molecular mechanisms remain unclear. Methods: Prior to pregnancy female mice were fed either a maternal normal-fat diet (NF-group, "no effectors"), or a maternal high-fat diet (HF-group, "persistent effectors"), or were transitioned from a HF to a NF diet before pregnancy (H9N-group, "effectors removal"), followed by pregnancy and lactation, and then offspring were fed high-fat diets after weaning. Offspring livers were analysed by functional studies, as well as next-generation sequencing for gene expression profiles and DNA methylation changes. Results: The HF, but not the H9N offspring, displayed glucose intolerance and hepatic steatosis. The HF offspring also displayed a disruption of lipid homeostasis associated with an altered methionine cycle and abnormal one-carbon metabolism that caused DNA hypermethylation and L-carnitine depletion associated with deactivated AMPK signalling and decreased expression of PPAR-α and genes for fatty acid oxidation. These changes were not present in H9N offspring. In addition, we identified maternal HF diet-induced genes involved in one-carbon metabolism that were associated with DNA methylation modifications in HF offspring. Importantly, the DNA methylation modifications and their associated gene expression changes were reversed in H9N offspring livers. Conclusions: Our results demonstrate for the first time that maternal HF diet disrupted the methionine cycle and one-carbon metabolism in offspring livers which further altered lipid homeostasis. CpG islands of specific genes involved in one-carbon metabolism modified by different maternal diets were identified.Item Methionine Restriction Impairs Degradation of a Protein that Aberrantly Engages the Endoplasmic Reticulum Translocon(Caltech LIbrary, 2023-11-09) Runnebohm, Avery M.; Indovina, Christopher J.; Turk, Samantha M.; Bailey, Connor G.; Orchard, Cade J.; Wade, Lauren; Overton, Danielle L.; Snow, Brian J.; Rubenstein, Eric M.; Biochemistry and Molecular Biology, School of MedicineProteins that persistently engage endoplasmic reticulum (ER) translocons are degraded by multiple translocon quality control (TQC) mechanisms. In Saccharomyces cerevisiae , the model translocon-associated protein Deg1 -Sec62 is subject to ER-associated degradation (ERAD) by the Hrd1 ubiquitin ligase and, to a lesser extent, proteolysis mediated by the Ste24 protease. In a recent screen, we identified nine methionine-biosynthetic genes as candidate TQC regulators. Here, we found methionine restriction impairs Hrd1-independent Deg1 -Sec62 degradation. Beyond revealing methionine as a novel regulator of TQC, our results urge caution when working with laboratory yeast strains with auxotrophic mutations, often presumed not to influence cellular processes under investigation.Item Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis Is Associated with Increased Intestinal Inflammation(Elsevier, 2021) Matthews, Destiny R.; Li, Honggui; Zhou, Jing; Li, Qingsheng; Glaser, Shannon; Francis, Heather; Alpini, Gianfranco; Wu, Chaodong; Medicine, School of MedicineInflammation drives the pathogenesis of nonalcoholic steatohepatitis (NASH). The current study examined changes in intestinal inflammation during NASH. In male C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in severe hepatic steatosis and inflammation relative to feeding a chow diet (CD). MCD-fed mice exhibited characteristics of mucosal and submucosal inflammatory responses compared with CD-fed mice. Moreover, intestinal phosphorylation states of c-Jun N-terminal protein kinase p46 and mRNA levels of IL-1B, IL-6, tumor necrosis factor alpha, and monocyte chemoattractant protein-1 were significantly higher and intestinal mRNA levels of IL-4 and IL-13 were significantly lower in MCD-fed mice compared with those in CD mice. Surprisingly, upon treatment with MCD-mimicking media, the proinflammatory responses in cultured intestinal epithelial CMT-93 cells did not differ significantly from those in CMT-93 cells treated with control media. In contrast, in RAW264.7 macrophages, MCD-mimicking media significantly increased the phosphorylation states of c-Jun N-terminal protein kinase p46 and mitogen-activated protein kinases p38 and mRNA levels of IL-1B, IL-6, IL-10, and tumor necrosis factor alpha under either basal or lipopolysaccharide-stimulated conditions. Collectively, these results suggest that increased intestinal inflammation is associated with NASH phenotype. Thus, elevated proinflammatory responses in macrophages likely contribute to, in large part, increased intestinal inflammation in NASH.