ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Metaverse"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A trustless architecture of blockchain-enabled metaverse
    (Elsevier, 2023-03) Xu, Minghui; Guo, Yihao; Hu, Qin; Xiong, Zehui; Yu, Dongxiao; Cheng, Xuizhen; Computer and Information Science, School of Science
    Metaverse has rekindled human beings’ desire to further break space-time barriers by fusing the virtual and real worlds. However, security and privacy threats hinder us from building a utopia. A metaverse embraces various techniques, while at the same time inheriting their pitfalls and thus exposing large attack surfaces. Blockchain, proposed in 2008, was regarded as a key building block of metaverses. it enables transparent and trusted computing environments using tamper-resistant decentralized ledgers. Currently, blockchain supports Decentralized Finance (DeFi) and Non-fungible Tokens (NFT) for metaverses. However, the power of a blockchain has not been sufficiently exploited. In this article, we propose a novel trustless architecture of blockchain-enabled metaverse, aiming to provide efficient resource integration and allocation by consolidating hardware and software components. To realize our design objectives, we provide an On-Demand Trusted Computing Environment (OTCE) technique based on local trust evaluation. Specifically, the architecture adopts a hypergraph to represent a metaverse, in which each hyperedge links a group of users with certain relationship. Then the trust level of each user group can be evaluated based on graph analytics techniques. Based on the trust value, each group can determine its security plan on demand, free from interference by irrelevant nodes. Besides, OTCEs enable large-scale and flexible application environments (sandboxes) while preserving a strong security guarantee.
  • Loading...
    Thumbnail Image
    Item
    Blockchain-based Edge Resource Sharing for Metaverse
    (IEEE, 2022-10) Wang, Zhilin; Hut, Qin; Xu, Minghui; Jiang, Honglu; Computer and Information Science, School of Science
    Although Metaverse has recently been widely studied, its practical application still faces many challenges. One of the severe challenges is the lack of sufficient resources for computing and communication on local devices, resulting in the inability to access the Metaverse services. To address this issue, this paper proposes a practical blockchain-based mobile edge computing (MEC) platform for resource sharing and optimal utilization to complete the requested offloading tasks, given the heterogeneity of servers' available resources and that of users' task requests. To be specific, we first elaborate the design of our proposed system and then dive into the task allocation mechanism to assign offloading tasks to proper servers. To solve the multiple task allocation (MTA) problem in polynomial time, we devise a learning-based algorithm. Since the objective function and constraints of MTA are significantly affected by the servers uploading the tasks, we reformulate it as a reinforcement learning problem and calculate the rewards for each state and action considering the influences of servers. Finally, numerous experiments are conducted to demonstrate the effectiveness and efficiency of our proposed system and algorithms.
  • Loading...
    Thumbnail Image
    Item
    Joint User Association and Resource Pricing for Metaverse: Distributed and Centralized Approaches
    (IEEE, 2022-10) Huang, Xumin; Zhong, Weifeng; Nie, Jiangtian; Hu, Qin; Xiong, Zehui; Kang, Jiawen; Quek, Tony Q. S.; Computer and Information Science, School of Science
    Metaverse as the next-generation Internet provides users with physical-virtual world interactions. To improve the quality of immersive experience, users access to Metaverse service providers (MSPs) and purchase bandwidth resource to reduce the communication latency of the Metaverse services. The MSPs decide selling price of the bandwidth resource to maximize the revenue. This leads to a joint user association and resource pricing problem between all users and MSPs. To tackle the problem, we formulate a Stackelberg game where the MSPs are game leaders and users are game followers. We resolve the Stackelberg equilibrium via the distributed and centralized approaches, according to different privacy requirements. In the distributed approach, the MSPs compete against each other to maximize the individual revenue, and a user selects an MSP in a probabilistic manner. The Stackelberg equilibrium is achieved in a privacy-friendly way. In the centralized approach, all MSPs and users accept the unified management and their strategies are instructed. The centralized approach acquires the superior decision-making performance but sacrifices the privacy of the game players. Finally, we provide numerical results to demonstrate the effectiveness and efficiency of our schemes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University