- Browse by Subject
Browsing by Subject "Metallothionein"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Improvement of Antioxidant Capacities(MDPI, 2021-06-23) Cho, Jung-Hyo; Lee, Jong-Suk; Kim, Hyeong-Geug; Lee, Hye Won; Fang, Zhigang; Kwon, Hyeok-Hee; Kim, Dong Woon; Lee, Chang-Min; Jeong, Jin-Woo; Biochemistry and Molecular Biology, School of MedicineNon-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH), affects 25% of the global population. Despite the prevalence of NAFLD worldwide, effective therapeutics are currently lacking. Amomum villosum var. xanthioides (Wall. ex Baker) T.L.Wu & S.J.Chen (AX) is a medicinal herb traditionally used for treating digestive tract disorders in countries across Asia. We aimed to examine the pharmacological effects of the ethyl acetate fraction of AX (AXEF) against tunicamycin (TM)-induced ER stress in a NASH mouse model using C57/BL6J male mice. Following TM injections (2 mg/kg), the mice were orally administrated AXEF (12.5, 25, or 50 mg/kg), silymarin (50 mg/kg), or distilled water daily for 5 days, and the outcomes for fatty liver, inflammation, and oxidative stress were measured in serum or liver tissue levels. AXEF drastically attenuated hepatic ER stress-induced NASH as indicated by decreases in lipid droplet accumulations, serum liver enzymes, hepatic inflammations, and cell death signals in the hepatic tissue and/or serum levels. Interestingly, AXEF showed potent antioxidant effects by quenching reactive oxidative stress and its final product lipid peroxide in the hepatic tissue, specifically an increase in metallothionein (MT). To confirm the underlying actions of AXEF, we observed that AXEF increases MT1 gene promoter activities in the physiological levels. Collectively, AXEF showed antioxidant properties on TM-induced ER stress in a NASH mice model through the improvement of MTs.Item An investigation of modifying effects of metallothionein single-nucleotide polymorphisms on the association between mercury exposure and biomarker levels(2012-04) Wang, Yi; Goodrich, Jaclyn M.; Gillespie, Brenda; Werner, Robert; Basu, Niladri; Franzblau, AlfredBACKGROUND: Recent studies have suggested that several genes that mediate mercury metabolism are polymorphic in humans. OBJECTIVE: We hypothesized that single-nucleotide polymorphisms (SNPs) in metallothionein (MT) genes may underlie interindividual differences in mercury biomarker levels. We studied the potential modifying effects of MT SNPs on mercury exposure-biomarker relationships. METHODS: We measured total mercury in urine and hair samples of 515 dental professionals. We also surveyed occupational and personal exposures to dental amalgam and dietary fish consumption, from which daily methylmercury (MeHg) intake was estimated. Log-transformed urine and hair levels were modeled in multivariable linear regression separately against respective exposure surrogates, and the effect modification of 13 MT SNPs on exposure was investigated. RESULTS: The mean mercury levels in urine (1.06 µg/L) and hair (0.51 µg/g) were not significantly different from the U.S. general population (0.95 µg/L and 0.47 µg/g, respectively). The mean estimated daily MeHg intake was 0.084 µg/kg/day (range, 0-0.98 µg/kg/day), with 25% of study population intakes exceeding the current U.S. Environmental Protection Agency reference dose of 0.1 µg/kg/day. Multivariate regression analysis showed that subjects with the MT1M (rs2270837) [corrected] AA genotype (n = 10) or the MT2A (rs10636) CC genotype (n = 42) had lower urinary mercury levels than did those with the MT1M or MT2A GG genotype (n = 329 and 251, respectively) after controlling for exposure and potential confounders. After controlling for MeHg intake, subjects with MT1A (rs8052394) GA and GG genotypes (n = 24) or the MT1M (rs9936741) TT genotype (n = 459) had lower hair mercury levels than did subjects with MT1A AA (n = 113) or MT1M TC and CC genotypes (n = 15), respectively. CONCLUSION: Our findings suggest that some MT genetic polymorphisms may influence mercury biomarker concentrations at levels of exposure relevant to the general population.Item An Investigation of Modifying Effects of Single Nucleotide Polymorphisms in Metabolism-related Genes on the Relationship between Peripheral Nerve Function and Mercury Levels in Urine and Hair(2012-02) Wang, Yi; Goodrich, Jaclyn M.; Werner, Robert; Gillespie, Brenda; Basu, Niladri; Franzblau, AlfredMercury (Hg) is a potent neurotoxicant. We hypothesized that single nucleotide polymorphisms (SNPs) in genes coding glutathione-related proteins, selenoproteins and metallothioneins may modify the relationship of mercury biomarkers with changes in peripheral nerve function. Dental professionals (n=515) were recruited in 2009 and 2010. Sensory nerve function (onset latency, peak latency and amplitude) of the median, ulnar and sural nerves was recorded. Samples of urine, hair and DNA were collected. Covariates related to demographics, nerve function and elemental and methyl-mercury exposure were also collected. Subjects included 244 dentists (47.4%) and 269 non-dentists (52.2%; mostly dental hygienists and dental assistants). The mean mercury levels in urine (1.06 μg/L) and hair (0.51 μg/g) were not significantly different from the US general population (0.95 μg/L and 0.47 μg/g, respectively). In multivariate linear models predicting nerve function adjusting for covariates, only 3 out of a total of 504 models showed stable and statistically significant interaction of SNPs with mercury biomarkers. Overall, given the possibility of false positives, the results suggested little evidence of effect modification of the SNPs on the relationship between mercury biomarkers with peripheral nerve function at exposure levels that are relevant to the general US population.