- Browse by Subject
Browsing by Subject "Metabolome"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Altered bile acid profile associates with cognitive impairment in Alzheimer's disease—An emerging role for gut microbiome(Elsevier, 2019-01) MahmoudianDehkordi, Siamak; Arnold, Matthias; Nho, Kwangsik; Ahmad, Shahzad; Jia, Wei; Xie, Guoxiang; Louie, Gregory; Kueider‐Paisley, Alexandra; Moseley, M. Arthur; Thompson, J. Will; St John Williams, Lisa; Tenenbaum, Jessica D.; Blach, Colette; Baillie, Rebecca; Han, Xianlin; Bhattacharyya, Sudeepa; Toledo, Jon B.; Schafferer, Simon; Klein, Sebastian; Koal, Therese; Risacher, Shannon L.; Kling, Mitchel Allan; Motsinger‐Reif, Alison; Rotroff, Daniel M.; Jack, John; Hankemeier, Thomas; Bennett, David A.; De Jager, Philip L.; Trojanowski, John Q.; Shaw, Leslie M.; Weiner, Michael W.; Doraiswamy, P. Murali; van Duijn, Cornelia M.; Saykin, Andrew J.; Kastenmüller, Gabi; Kaddurah‐Daouk, Rima; Radiology and Imaging Sciences, School of MedicineIntroduction Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut‐brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD). Methods Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD‐related genetic variants, adjusting for confounders and multiple testing. Results In AD compared to cognitively normal older adults, we observed significantly lower serum concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α‐dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response–related genes implicated in AD showed associations with BA profiles. Discussion We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut‐liver‐brain axis in the pathogenesis of AD.Item CTD: An information-theoretic algorithm to interpret sets of metabolomic and transcriptomic perturbations in the context of graphical models(PLOS, 2021-01) Thistlethwaite, Lillian R.; Petrosyan, Varduhi; Li, Xiqi; Miller, Marcus J.; Elsea, Sarah H.; Milosavljevic, Aleksandar; Medical and Molecular Genetics, School of MedicineWe consider the following general family of algorithmic problems that arises in transcriptomics, metabolomics and other fields: given a weighted graph G and a subset of its nodes S, find subsets of S that show significant connectedness within G. A specific solution to this problem may be defined by devising a scoring function, the Maximum Clique problem being a classic example, where S includes all nodes in G and where the score is defined by the size of the largest subset of S fully connected within G. Major practical obstacles for the plethora of algorithms addressing this type of problem include computational efficiency and, particularly for more complex scores which take edge weights into account, the computational cost of permutation testing, a statistical procedure required to obtain a bound on the p-value for a connectedness score. To address these problems, we developed CTD, "Connect the Dots", a fast algorithm based on data compression that detects highly connected subsets within S. CTD provides information-theoretic upper bounds on p-values when S contains a small fraction of nodes in G without requiring computationally costly permutation testing. We apply the CTD algorithm to interpret multi-metabolite perturbations due to inborn errors of metabolism and multi-transcript perturbations associated with breast cancer in the context of disease-specific Gaussian Markov Random Field networks learned directly from respective molecular profiling data.Item Effect of Bovine Milk Fat Globule Membrane and Lactoferrin in Infant Formula on Gut Microbiome and Metabolome at 4 Months of Age(Oxford University Press, 2021-04-02) Chichlowski, Maciej; Bokulich, Nicholas; Harris, Cheryl L.; Wampler, Jennifer L.; Li, Fei; Berseth, Carol Lynn; Rudolph, Colin; Wu, Steven S.; Pediatrics, School of MedicineBackground: Milk fat globule membrane (MFGM) and lactoferrin (LF) are human-milk bioactive components demonstrated to support gastrointestinal and immune development. Significantly fewer diarrhea and respiratory-associated adverse events through 18 mo of age were previously reported in healthy term infants fed a cow-milk-based infant formula with an added source of bovine MFGM and bovine LF through 12 mo of age. Objectives: The aim was to compare microbiota and metabolite profiles in a subset of study participants. Methods: Stool samples were collected at baseline (10-14 d of age) and day 120. Bacterial community profiling was performed via 16S rRNA gene sequencing and alpha and beta diversity were analyzed (QIIME 2). Differentially abundant taxa were determined using linear discriminant analysis effect size (LefSE) and visualized (Metacoder). Untargeted stool metabolites were analyzed (HPLC/MS) and expressed as the fold-change between group means (control to MFGM+LF ratio). Results: Alpha diversity increased significantly in both groups from baseline to 4 mo. Subtle group differences in beta diversity were demonstrated at 4 mo (Jaccard distance; R 2 = 0.01, P = 0.042). Specifically, Bacteroides uniformis and Bacteroides plebeius were more abundant in the MFGM+LF group at 4 mo. Metabolite profile differences for MFGM+LF versus control included lower fecal medium-chain fatty acids, deoxycarnitine, and glycochenodeoxycholate, and some higher fecal carbohydrates and steroids (P < 0.05). After applying multiple test correction, the differences in stool metabolomics were not significant. Conclusions: Addition of bovine MFGM and LF in infant formula was associated with subtle differences in stool microbiome and metabolome by 4 mo of age, including increased prevalence of Bacteroides species. Stool metabolite profiles may be consistent with altered microbial metabolism.Item Haemophilus ducreyi Infection Induces Oxidative Stress, Central Metabolic Changes, and a Mixed Pro- and Anti-inflammatory Environment in the Human Host(American Society for Microbiology, 2022) Brothwell, Julie A.; Fortney, Kate R.; Gao, Hongyu; Wilson, Landon S.; Andrews, Caroline F.; Tran, Tuan M.; Hu, Xin; Batteiger, Teresa A.; Barnes, Stephen; Liu, Yunlong; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineFew studies have investigated host-bacterial interactions at sites of infection in humans using transcriptomics and metabolomics. Haemophilus ducreyi causes cutaneous ulcers in children and the genital ulcer disease chancroid in adults. We developed a human challenge model in which healthy adult volunteers are infected with H. ducreyi on the upper arm until they develop pustules. Here, we characterized host-pathogen interactions in pustules using transcriptomics and metabolomics and examined interactions between the host transcriptome and metabolome using integrated omics. In a previous pilot study, we determined the human and H. ducreyi transcriptomes and the metabolome of pustule and wounded sites of 4 volunteers (B. Griesenauer, T. M. Tran, K. R. Fortney, D. M. Janowicz, et al., mBio 10:e01193-19, 2019, https://doi.org/10.1128/mBio.01193-19). While we could form provisional transcriptional networks between the host and H. ducreyi, the study was underpowered to integrate the metabolome with the host transcriptome. To better define and integrate the transcriptomes and metabolome, we used samples from both the pilot study (n = 4) and new volunteers (n = 8) to identify 5,495 human differentially expressed genes (DEGs), 123 H. ducreyi DEGs, 205 differentially abundant positive ions, and 198 differentially abundant negative ions. We identified 42 positively correlated and 29 negatively correlated human-H. ducreyi transcriptome clusters. In addition, we defined human transcriptome-metabolome networks consisting of 9 total clusters, which highlighted changes in fatty acid metabolism and mitigation of oxidative damage. Taken together, the data suggest a mixed pro- and anti-inflammatory environment and rewired central metabolism in the host that provides a hostile, nutrient-limited environment for H. ducreyi.Item Interactions of the Skin Pathogen Haemophilus ducreyi With the Human Host(Frontiers Media, 2021-02-03) Brothwell, Julie A.; Griesenauer, Brad; Chen, Li; Spinola, Stanley M.; Microbiology and Immunology, School of MedicineThe obligate human pathogen Haemophilus ducreyi causes both cutaneous ulcers in children and sexually transmitted genital ulcers (chancroid) in adults. Pathogenesis is dependent on avoiding phagocytosis and exploiting the suppurative granuloma-like niche, which contains a myriad of innate immune cells and memory T cells. Despite this immune infiltrate, long-lived immune protection does not develop against repeated H. ducreyi infections—even with the same strain. Most of what we know about infectious skin diseases comes from naturally occurring infections and/or animal models; however, for H. ducreyi, this information comes from an experimental model of infection in human volunteers that was developed nearly three decades ago. The model mirrors the progression of natural disease and serves as a valuable tool to determine the composition of the immune cell infiltrate early in disease and to identify host and bacterial factors that are required for the establishment of infection and disease progression. Most recently, holistic investigation of the experimentally infected skin microenvironment using multiple “omics” techniques has revealed that non-canonical bacterial virulence factors, such as genes involved in central metabolism, may be relevant to disease progression. Thus, the immune system not only defends the host against H. ducreyi, but also dictates the nutrient availability for the invading bacteria, which must adapt their gene expression to exploit the inflammatory metabolic niche. These findings have broadened our view of the host-pathogen interaction network from considering only classical, effector-based virulence paradigms to include adaptations to the metabolic environment. How both host and bacterial factors interact to determine infection outcome is a current focus in the field. Here, we review what we have learned from experimental H. ducreyi infection about host-pathogen interactions, make comparisons to what is known for other skin pathogens, and discuss how novel technologies will deepen our understanding of this infection.Item Interplay of Metabolome and Gut Microbiome in Individuals With Major Depressive Disorder vs Control Individuals(American Medical Association, 2023) Amin, Najaf; Liu, Jun; Bonnechere, Bruno; MahmoudianDehkordi, Siamak; Arnold, Matthias; Batra, Richa; Chiou, Yu-Jie; Fernandes, Marco; Ikram, M. Arfan; Kraaij, Robert; Krumsiek, Jan; Newby, Danielle; Nho, Kwangsik; Radjabzadeh, Djawad; Saykin, Andrew J.; Shi, Liu; Sproviero, William; Winchester, Laura; Yang, Yang; Nevado-Holgado, Alejo J.; Kastenmüller, Gabi; Kaddurah-Daouk, Rima; van Duijn, Cornelia M.; Radiology and Imaging Sciences, School of MedicineImportance: Metabolomics reflect the net effect of genetic and environmental influences and thus provide a comprehensive approach to evaluating the pathogenesis of complex diseases, such as depression. Objective: To identify the metabolic signatures of major depressive disorder (MDD), elucidate the direction of associations using mendelian randomization, and evaluate the interplay of the human gut microbiome and metabolome in the development of MDD. Design, setting and participants: This cohort study used data from participants in the UK Biobank cohort (n = 500 000; aged 37 to 73 years; recruited from 2006 to 2010) whose blood was profiled for metabolomics. Replication was sought in the PREDICT and BBMRI-NL studies. Publicly available summary statistics from a 2019 genome-wide association study of depression were used for the mendelian randomization (individuals with MDD = 59 851; control individuals = 113 154). Summary statistics for the metabolites were obtained from OpenGWAS in MRbase (n = 118 000). To evaluate the interplay of the metabolome and the gut microbiome in the pathogenesis of depression, metabolic signatures of the gut microbiome were obtained from a 2019 study performed in Dutch cohorts. Data were analyzed from March to December 2021. Main outcomes and measures: Outcomes were lifetime and recurrent MDD, with 249 metabolites profiled with nuclear magnetic resonance spectroscopy with the Nightingale platform. Results: The study included 6811 individuals with lifetime MDD compared with 51 446 control individuals and 4370 individuals with recurrent MDD compared with 62 508 control individuals. Individuals with lifetime MDD were younger (median [IQR] age, 56 [49-62] years vs 58 [51-64] years) and more often female (4447 [65%] vs 2364 [35%]) than control individuals. Metabolic signatures of MDD consisted of 124 metabolites spanning the energy and lipid metabolism pathways. Novel findings included 49 metabolites, including those involved in the tricarboxylic acid cycle (ie, citrate and pyruvate). Citrate was significantly decreased (β [SE], -0.07 [0.02]; FDR = 4 × 10-04) and pyruvate was significantly increased (β [SE], 0.04 [0.02]; FDR = 0.02) in individuals with MDD. Changes observed in these metabolites, particularly lipoproteins, were consistent with the differential composition of gut microbiota belonging to the order Clostridiales and the phyla Proteobacteria/Pseudomonadota and Bacteroidetes/Bacteroidota. Mendelian randomization suggested that fatty acids and intermediate and very large density lipoproteins changed in association with the disease process but high-density lipoproteins and the metabolites in the tricarboxylic acid cycle did not. Conclusions and relevance: The study findings showed that energy metabolism was disturbed in individuals with MDD and that the interplay of the gut microbiome and blood metabolome may play a role in lipid metabolism in individuals with MDD.Item Metabolite Profiles of Incident Diabetes and Heterogeneity of Treatment Effect in the Diabetes Prevention Program(American Diabetes Association, 2019-12) Chen, Zsu-Zsu; Liu, Jinxi; Morningstar, Jordan; Heckman-Stoddard, Brandy M.; Lee, Christine G.; Dagogo-Jack, Samuel; Ferguson, Jane F.; Hamman, Richard F.; Knowler, William C.; Mather, Kieren J.; Perreault, Leigh; Florez, Jose C.; Wang, Thomas J.; Clish, Clary; Temprosa, Marinella; Gerszten, Robert E.; Medicine, School of MedicineNovel biomarkers of type 2 diabetes (T2D) and response to preventative treatment in individuals with similar clinical risk may highlight metabolic pathways that are important in disease development. We profiled 331 metabolites in 2,015 baseline plasma samples from the Diabetes Prevention Program (DPP). Cox models were used to determine associations between metabolites and incident T2D, as well as whether associations differed by treatment group (i.e., lifestyle [ILS], metformin [MET], or placebo [PLA]), over an average of 3.2 years of follow-up. We found 69 metabolites associated with incident T2D regardless of treatment randomization. In particular, cytosine was novel and associated with the lowest risk. In an exploratory analysis, 35 baseline metabolite associations with incident T2D differed across the treatment groups. Stratification by baseline levels of several of these metabolites, including specific phospholipids and AMP, modified the effect that ILS or MET had on diabetes development. Our findings highlight novel markers of diabetes risk and preventative treatment effect in individuals who are clinically at high risk and motivate further studies to validate these interactions.Item Microbial translocation and metabolic and body composition measures in treated and untreated HIV infection(Mary Ann Liebert, Inc., 2014-03) Timmons, Tamara; Shen, Changyu; Aldrovandi, Grace; Rollie, Adrienne; Gupta, Samir K.; Stein, James H.; Dube´, Michael P.; Biostatistics, School of MedicineCirculating levels of microbial products such as lipopolysaccharide (LPS) are increased in HIV infection. Microbial translocation promotes obesity, insulin resistance, and dyslipidemia in other settings. We examined data from 178 subjects: an Indiana University (IU) cross-sectional study [N=49 on antiretroviral therapy (ART), N=47 not on ART], and a 24 week prospective study of ART initiation ACTG 5152s (N=82). Pearson correlations were used to describe relationships of plasma LPS levels and soluble CD14 (sCD14), a marker of monocyte activation, with metabolic and body composition measures. HOMA-IR (a measure of insulin resistance) and LPS were correlated for the combined cohorts (r=0.19, p=0.02), particularly in the 5152s ART-naive cohort (r=0.41, p<0.01). Triglycerides were correlated with LPS in the combined cohort (r=0.32, p<0.01), and all subsets excluding the IU on ART subset. There were negative correlations between sCD14 and high-density lipoprotein (HDL) cholesterol in all subjects (r=-0.21, p<0.01), as well as the IU subset not on ART (r=-0.32, p=0.04). Large particle HDL as measured by NMR spectroscopy, but not HDL cholesterol, was negatively correlated with LPS (r=-0.18, p=0.02), particularly among the IU subset receiving ART (r=-0.33, p=0.03). In the combined cohorts, sCD14 was negatively correlated with lean mass as well as trunk and limb fat. There is a relationship between microbial translocation markers and metabolic effects, particularly lipoproteins. During prolonged ART, microbial translocation was associated with an adverse effect on large HDL and thus may contribute to the increased cardiovascular disease risk observed during chronic treatment of HIV.Item Multi-omics for biomarker approaches in the diagnostic evaluation and management of abdominal pain and irritable bowel syndrome: what lies ahead(Taylor & Francis, 2023) Shin, Andrea; Kashyap, Purna C.; Medicine, School of MedicineReliable biomarkers for common disorders of gut-brain interaction characterized by abdominal pain, including irritable bowel syndrome (IBS), are critically needed to enhance care and develop individualized therapies. The dynamic and heterogeneous nature of the pathophysiological mechanisms that underlie visceral hypersensitivity have challenged successful biomarker development. Consequently, effective therapies for pain in IBS are lacking. However, recent advances in modern omics technologies offer new opportunities to acquire deep biological insights into mechanisms of pain and nociception. Newer methods for large-scale data integration of complementary omics approaches have further expanded our ability to build a holistic understanding of complex biological networks and their co-contributions to abdominal pain. Here, we review the mechanisms of visceral hypersensitivity, focusing on IBS. We discuss candidate biomarkers for pain in IBS identified through single omics studies and summarize emerging multi-omics approaches for developing novel biomarkers that may transform clinical care for patients with IBS and abdominal pain.Item Natural Clearance of Chlamydia trachomatis Infection Is Associated With Distinct Differences in Cervicovaginal Metabolites(Oxford University Press, 2023) Jordan, Stephen J.; Wilson, Landon; Ren, Jie; Gupta, Kanupriya; Barnes, Stephen; Geisler, William M.; Medicine, School of MedicineBackground: Natural clearance of Chlamydia trachomatis in women occurs in the interval between screening and treatment. In vitro, interferon-γ (IFN-γ)-mediated tryptophan depletion results in C. trachomatis clearance, but whether this mechanism occurs in vivo remains unclear. We previously found that women who naturally cleared C. trachomatis had lower cervicovaginal levels of tryptophan and IFN-γ compared to women with persisting infection, suggesting IFN-γ-independent pathways may promote C. trachomatis clearance. Methods: Cervicovaginal lavages from 34 women who did (n = 17) or did not (n = 17) naturally clear C. trachomatis were subjected to untargeted high-performance liquid chromatography mass-spectrometry to identify metabolites and metabolic pathways associated with natural clearance. Results: In total, 375 positively charged metabolites and 149 negatively charged metabolites were annotated. Compared to women with persisting infection, C. trachomatis natural clearance was associated with increased levels of oligosaccharides trehalose, sucrose, melezitose, and maltotriose, and lower levels of indoline and various amino acids. Metabolites were associated with valine, leucine, and isoleucine biosynthesis pathways. Conclusions: The cervicovaginal metabolome in women who did or did not naturally clear C. trachomatis is distinct. In women who cleared C. trachomatis, depletion of various amino acids, especially valine, leucine, and isoleucine, suggests that amino acids other than tryptophan impact C. trachomatis survival in vivo.