ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Metabolic bone disease"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Editorial: Acute Kidney Injury: It's Not Just Acute, and It's Not Just the Kidneys
    (Frontiers Media, 2021-11-15) Soranno, Danielle E.; Deep, Akash; Gist, Katja M.; Zappitelli, Michael; Pediatrics, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Invited Mini Review Metabolic Bone Disease of Prematurity: Overview and Practice Recommendations
    (Karger, 2025) Grover, Monica; Ashraf, Ambika P.; Bowden, Sasigarn A.; Calabria, Andrew; Diaz-Thomas, Alicia; Krishnan, Sowmya; Miller, Jennifer L.; Robinson, Marie-Eve; DiMeglio, Linda A.; Pediatrics, School of Medicine
    Metabolic bone disease of prematurity (MBDP) is defined by undermineralization of the preterm infant skeleton arising from inadequate prenatal and postnatal calcium (Ca) and phosphate (PO4) accretion. Severe MBDP can be associated with rickets and fractures. Despite advances in neonatal nutrition, MBDP remains prevalent in premature infants due to inadequate mineral accretion ex utero. There also remain significant knowledge gaps regarding best practices for monitoring and treatment of MBDP among neonatologists and pediatric endocrinologists. Preventing and treating MBDP can prevent serious consequences including rickets or pathologic fractures. Postnatal monitoring to facilitate early recognition of MBDP is best done by first-tier laboratory screening by measuring serum Ca, phosphorus, and alkaline phosphatase to identify infants at risk. If these laboratories are abnormal, further studies including assessing parathyroid hormone and/or tubular resorption of PO4 can help differentiate between Ca and PO4 deficiency as primary etiologies to guide appropriate treatment with mineral supplements. Additional research into optimal mineral supplementation for the prevention and treatment of MBDP is needed to improve long-term bone health outcomes and provide a fuller evidence base for future treatment guidelines. Metabolic bone disease of prematurity (MBDP) is defined by undermineralization of the preterm infant skeleton arising from inadequate prenatal and postnatal calcium (Ca) and phosphate (PO4) accretion. Severe MBDP can be associated with rickets and fractures. Despite advances in neonatal nutrition, MBDP remains prevalent in premature infants due to inadequate mineral accretion ex utero. There also remain significant knowledge gaps regarding best practices for monitoring and treatment of MBDP among neonatologists and pediatric endocrinologists. Preventing and treating MBDP can prevent serious consequences including rickets or pathologic fractures. Postnatal monitoring to facilitate early recognition of MBDP is best done by first-tier laboratory screening by measuring serum Ca, phosphorus, and alkaline phosphatase to identify infants at risk. If these laboratories are abnormal, further studies including assessing parathyroid hormone and/or tubular resorption of PO4 can help differentiate between Ca and PO4 deficiency as primary etiologies to guide appropriate treatment with mineral supplements. Additional research into optimal mineral supplementation for the prevention and treatment of MBDP is needed to improve long-term bone health outcomes and provide a fuller evidence base for future treatment guidelines.
  • Loading...
    Thumbnail Image
    Item
    Osteocyte Egln1/Phd2 links oxygen sensing and biomineralization via FGF23
    (Springer Nature, 2023-01-18) Noonan, Megan L.; Ni, Pu; Solis, Emmanuel; Marambio, Yamil G.; Agoro, Rafiou; Chu, Xiaona; Wang, Yue; Gao, Hongyu; Xuei, Xiaoling; Clinkenbeard, Erica L.; Jiang, Guanglong; Liu, Sheng; Stegen, Steve; Carmeliet, Geert; Thompson, William R.; Liu, Yunlong; Wan, Jun; White, Kenneth E.; Medical and Molecular Genetics, School of Medicine
    Osteocytes act within a hypoxic environment to control key steps in bone formation. FGF23, a critical phosphate-regulating hormone, is stimulated by low oxygen/iron in acute and chronic diseases, however the molecular mechanisms directing this process remain unclear. Our goal was to identify the osteocyte factors responsible for FGF23 production driven by changes in oxygen/iron utilization. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) which stabilize HIF transcription factors, increased Fgf23 in normal mice, as well as in osteocyte-like cells; in mice with conditional osteocyte Fgf23 deletion, circulating iFGF23 was suppressed. An inducible MSC cell line ('MPC2') underwent FG-4592 treatment and ATACseq/RNAseq, and demonstrated that differentiated osteocytes significantly increased HIF genomic accessibility versus progenitor cells. Integrative genomics also revealed increased prolyl hydroxylase Egln1 (Phd2) chromatin accessibility and expression, which was positively associated with osteocyte differentiation. In mice with chronic kidney disease (CKD), Phd1-3 enzymes were suppressed, consistent with FGF23 upregulation in this model. Conditional loss of Phd2 from osteocytes in vivo resulted in upregulated Fgf23, in line with our findings that the MPC2 cell line lacking Phd2 (CRISPR Phd2-KO cells) constitutively activated Fgf23 that was abolished by HIF1α blockade. In vitro, Phd2-KO cells lost iron-mediated suppression of Fgf23 and this activity was not compensated for by Phd1 or -3. In sum, osteocytes become adapted to oxygen/iron sensing during differentiation and are directly sensitive to bioavailable iron. Further, Phd2 is a critical mediator of osteocyte FGF23 production, thus our collective studies may provide new therapeutic targets for skeletal diseases involving disturbed oxygen/iron sensing.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University