- Browse by Subject
Browsing by Subject "Membranes (Biology)"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Biophysical studies of cholesterol in unsaturated phospholipid model membranes(2013) Williams, Justin A.; Wassall, Stephen R.; Decca, Ricardo; Petrache, Horia; Zhu, Fangqiang; Todd, Brian A.Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distr ibuted to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. T his research employs model membranes of well - defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega - 3 (n - 3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids . T he m olecular organization of 1 -[ 2 H 31 ]palmitoyl -2- eicosapentaenoylphosphatidylcholine (PEPC - d 31 ) and 1 -[ 2 H 31 ]palmitoyl -2- docosahexaenoylphosphatidylcholine (PDPC -d 31 ) in membran es with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid - state 2 H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n - 3 PUFAs found in fish oil, while PEPC -d 31 and PDPC -d 31 are phospholipids containing the respective PUFAs at the sn - 2 position and a perdeuterated palmitic acid a t the sn - 1 position . Analysis of s pectra recorded as a function of temperature indicate s that in both cases, formation of PUFA - rich (less ordered) and SM - rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infil trate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%) . The implication is that n - 3 PUFA s can incorporate into lipid rafts, which are domains enriched in SM and chol in the plasma membrane, and potentially disrupt the activity of signaling proteins that reside therein. DHA, furthermore, may be the more potent component of fish oil. PUFA - chol interactions were also examined through affinity measurements. A novel method utilizing electron paramagnetic resonance (EPR) was develope d, to monitor the partitioning of a spin - labeled analog of chol , 3β - doxyl - 5α - cholestane (chlstn), between large unilamellar vesicles (LUVs) and met hyl - β - cyclodextrin (mβCD). The EPR spectra for chlstn in the two environments are distinguishable due to the substantial differences in tumbling rates , allowing the population distribution ratio to be determined by spectral simulation. Advantages of this approach include speed of implementation and a vo idance of potential artifact s associated with physical separation of LUV and mβCD . Additionally, in a check of the method, t he relative partition coefficients between lipids measured for the spin label analog agree with values obtained for chol by isothermal titration calorimetry (ITC). Results from LUV with different composition confirmed a hierarchy of decreased sterol affinity for phospholipids with increasing acyl chain unsaturation , PDPC possessing half the affinity of the corresponding monounsaturated phospholipid. Taken together, the results of these studies on model membranes demonstrate the potential for PUFA - driven alteration of the architecture of biomembranes, a mechanism through which human health may be impacted.Item Development and characterization of diffusion membrane potentials in canine cardiac sarcolemmal vesicles(1981) Maddock, Stephen WilliamItem Effects of carbon nanotubes on barrier epithelial cells via effects on lipid bilayers(2013) Lewis, Shanta; Blazer-Yost, Bonnie; Petrache, Horia; Witzmann, F. A. (Frank A.); Atkinson, SimonCarbon nanotubes (CNTs) are one of the most common nanoparticles (NP) found in workplace air. Therefore, there is a strong chance that these NP will enter the human body. They have similar physical properties to asbestos, a known toxic material, yet there is limited evidence showing that CNTs may be hazardous to human barrier epithelia. In previous studies done in our laboratory, the effects of CNTs on the barrier function in the human airway epithelial cell line (Calu-3) were measured. Measurements were done using electrophysiology, a technique which measures both transepithelial electrical resistance (TEER), a measure of monolayer integrity, and short circuit current (SCC) which is a measure of vectorial ion transport across the cell monolayer. The research findings showed that select physiologically relevant concentrations of long single-wall (SW) and multi-wall (MW) CNTs significantly decreased the stimulated SCC of the Calu-3 cells compared to untreated cultures. Calu-3 cells showed decreases in TEER when incubated for 48 hours (h) with concentrations of MWCNT ranging from 4µg/cm2 to 0.4ng/cm2 and SWCNT ranging from 4µg/cm2 to 0.04ng/cm2. The impaired cellular function, despite sustained cell viability, led us to investigate the mechanism by which the CNTs were affecting the cell membrane. We investigated the interaction of short MWCNTs with model lipid membranes using an ion channel amplifier, Planar Bilayer Workstation. Membranes were synthesized using neutral diphytanoylphosphatidylcholine (DPhPC) and negatively charged diphytanoylphosphatidylserine (DPhPS) lipids. Gramicidin A (GA), an ion channel reporter protein, was used to measure changes in ion channel conductance due to CNT exposures. Synthetic membranes exposed to CNTs allowed bursts of currents to cross the membrane when they were added to the membrane buffer system. When added to the membrane in the presence of GA, they distorted channel formation and reduced membrane stability.Item Item Electrical properties of cardiac sarcoplasmic reticulum membrane vesicles(1980) Farmen, Raymond H.Item Identification of TgElp3 as an essential, tail-anchored mitochondrial lysine acetyltransferase in the protozoan pathogen toxoplasma gondii(2014-07-11) Stilger, Krista L.; Nass, Richard M.; Bauer, Margaret E.; Oxford, G. S.; Queener, Sherry F.; Sullivan, William J., Jr.Toxoplasma gondii, a single-celled eukaryotic pathogen, has infected one-third of the world’s population and is the causative agent of toxoplasmosis. The disease primarily affects immunocompromised individuals such as AIDS, cancer, and transplant patients. The parasites can infect any nucleated cell in warm-blooded vertebrates, but because they preferentially target CNS, heart, and ocular tissue, manifestations of infection often include encephalitis, myocarditis, and a host of neurological and ocular disorders. Toxoplasma can also be transmitted congenitally by a mother who becomes infected for the first time during pregnancy, which may result in spontaneous abortion or birth defects in the child. Unfortunately, the therapy currently available for treating toxoplasmosis exhibits serious side effects and can cause severe allergic reactions. Therefore, there is a desperate need to identify novel drug targets for developing more effective, less toxic treatments. The regulation of proteins via lysine acetylation, a reversible post-translational modification, has previously been validated as a promising avenue for drug development. Lysine acetyltransferases (KATs) are responsible for the acetylation of hundreds of proteins throughout prokaryotic and eukaryotic cells. In Toxoplasma, we identified a KAT that exhibits homology to Elongator protein 3 (TgElp3), the catalytic component of a transcriptional elongation complex. TgElp3 contains the highly conserved radical S-adenosylmethionine and KAT domains but also possesses a unique C-terminal transmembrane domain (TMD). Interestingly, we found that the TMD anchors TgElp3 in the outer mitochondrial membrane (OMM) such that the catalytic domains are oriented towards the cytosol. Our results uncovered the first tail-anchored mitochondrial KAT reported for any species to date. We also discovered a shortened form of Elp3 present in mouse mitochondria, suggesting that Elp3 functions beyond transcriptional elongation across eukaryotes. Furthermore, we established that TgElp3 is essential for parasite viability and that its OMM localization is important for its function, highlighting its value as a potential target for future drug development.Item Relationships between drug-induced perturbation of Na+/K+-ATPase activity and synaptic plasma membrane structure(1990) Carfagna, Mark AnthonyItem Synthesis of peptides that form ion-channels in artificial lipid bilayers(1984) Pottorf, Richard Scott