- Browse by Subject
Browsing by Subject "Megakaryocyte"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease(Springer, 2023) Karnik, Sonali J.; Nazzal, Murad K.; Kacena, Melissa A.; Bruzzaniti, Angela; Orthopaedic Surgery, School of MedicineThe bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell-cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.Item Methylation of dual-specificity phosphatase 4 controls cell differentiation(Cell Press, 2021) Su, Hairui; Jiang, Ming; Senevirathne, Chamara; Aluri, Srinivas; Zhang, Tuo; Guo, Han; Xavier-Ferrucio, Juliana; Jin, Shuiling; Tran, Ngoc-Tung; Liu, Szu-Mam; Sun, Chiao-Wang; Zhu, Yongxia; Zhao, Qing; Chen, Yuling; Cable, LouAnn; Shen, Yudao; Liu, Jing; Qu, Cheng-Kui; Han, Xiaosi; Klug, Christopher A.; Bhatia, Ravi; Chen, Yabing; Nimer, Stephen D.; Zheng, Y. George; Iancu-Rubin, Camelia; Jin, Jian; Deng, Haiteng; Krause, Diane S.; Xiang, Jenny; Verma, Amit; Luo, Minkui; Zhao, Xinyang; Pediatrics, School of MedicineMitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.Item The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells(Impact Journals, 2024) Nazzal, Murad K.; Battina, Hanisha L.; Tewari, Nikhil P.; Mostardo, Sarah L.; Nagaraj, Rohit U.; Zhou, Donghui; Awosanya, Olatundun D.; Majety, Saveda K.; Samson, Sue; Blosser, Rachel J.; Dadwal, Ushashi C.; Mulcrone, Patrick L.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineWith aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.