ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Mechanistic target of rapamycin complex 2"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The potential of sestrins as therapeutic targets for diabetes
    (Taylor & Francis, 2015-08) Dong, X. Charlie; Department of Biochemistry & Molecular Biology, IU School of Medicine
    Sestrins (Sesn1/2/3) belong to a small protein family that has versatile biological functions. In addition to initially characterized oxidoreductase activity, sestrins also have oxidoreductase-independent functions, including activation of AMP-activated protein kinase, inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) and activation of mTORC2. As these kinases are important for metabolic regulation, sestrins have a favorable profile as potential therapeutic targets for metabolic diseases such as diabetes. Recent data are in line with such a notion. In this editorial, I have attempted to provide a brief update on the major findings in regard to sestrins in metabolism.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University