- Browse by Subject
Browsing by Subject "Mechanical Loading"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Development of an Artificial Finger-Like Knee Loading Device to Promote Bone Health(Scientific Research Publishing, 2017-11) Korupolu, Sandeep; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel; Mechanical and Energy Engineering, School of Engineering and TechnologyThis study presents the development of an innovative artificial finger-like device that provides position specific mechanical loads at the end of the long bone and induces mechanotransduction in bone. Bone cells such as osteoblasts are the mechanosensitive cells that regulate bone remodelling. When they receive gentle, periodic mechanical loads, new bone formation is promoted. The proposed device is an under-actuated multi-fingered artificial hand with 4 fingers, each having two phalanges. These fingers are connected by mechanical linkages and operated by a worm gearing mechanism. With the help of 3D printing technology, a prototype device was built mostly using plastic materials. The experimental validation results show that the device is capable of generating necessary forces at the desired frequencies, which are suitable for the stimulation of bone cells and the promotion of bone formation. It is recommended that the device be tested in a clinical study for confirming its safety and efficacy with patients.Item Experimental and Computational Analysis of Dynamic Loading for Bone Formation(2013-11-12) Dodge, Todd Randall; Wallace, Joseph; Na, Sungsoo; Yokota, Hiroki, 1955-; Schild, John H.Bone is a dynamic tissue that is constantly remodeling to repair damage and strengthen regions exposed to loads during everyday activities. However, certain conditions, including long-term unloading of the skeleton, hormonal imbalances, and aging can disrupt the normal bone remodeling cycle and lead to low bone mass and osteoporosis, increasing risk of fracture. While numerous treatments for low bone mass have been devised, dynamic mechanical loading modalities, such as axial loading of long bones and lateral loading of joints, have recently been examined as potential methods of stimulating bone formation. The effectiveness of mechanical loading in strengthening bone is dependent both on the structural and geometric characteristics of the bone and the properties of the applied load. For instance, curvature in the structure of a bone causes bending and increased strain in response to an axial load, which may contribute to increased bone formation. In addition, frequency of the applied load has been determined to impact the degree of new bone formation; however, the mechanism behind this relationship remains unknown. In this thesis, the application of mechanical loading to treat osteoporotic conditions is examined and two questions are addressed: What role does the structural geometry of bone play in the mechanical damping of forces applied during loading? Does mechanical resonance enhance geometric effects, leading to localized areas of elevated bone formation dependent on loading frequency? Curvature in the structure of bone was hypothesized to enhance its damping ability and lead to increased bone formation through bending. In addition, loading at frequencies near the resonant frequencies of bone was predicted to cause increased bone formation, specifically in areas that experienced high principal strains due to localized displacements during resonant vibration. To test the hypothesis, mechanical loading experiments and simulations using finite element (FE) analysis were conducted to characterize the dynamic properties of bone. Results demonstrate that while surrounding joints contribute to the greatest portion of the damping capacity of the lower limb, bone absorbs a significant amount of energy through curvature-driven bending. In addition, results show that enhanced mechanical responses at loading frequencies near the resonant frequencies of bone may lead to increased bone formation in areas that experience the greatest principal strain during vibration. These findings demonstrate the potential therapeutic effects of mechanical loading in preventing costly osteoporotic fractures, and explore characteristics of bone that may lead to optimization of mechanical loading techniques. Further investigation of biomechanical properties of bone may lead to the prescribing of personalized mechanical loading treatments to treat osteoporotic diseases.Item Gene Expression Patterns in Bone Following Mechanical Loading(Office of the Vice Chancellor for Research, 2010-04-09) Mantila Roosa, S.M.; Liu, Y.; Turner, C.H.Mechanical loading is a potent anabolic stimulus that substantially strengthens bones, and the time course of bone formation after initiating mechanical loading is well characterized. However, the time sequence for gene expression in a bone subjected to mechanical loading, over an extended period of time, has not been established. The advent of high-throughput measurements of gene expression and bioinformatics analysis methods offers new ways to study gene expression patterns. The primary goal of this study was to determine the time sequence for gene expression in a bone subjected to mechanical loading, during key periods of the bone formation process, including expression of matrix-related genes, the appearance of active osteoblasts, and bone desensitization. We evaluated loading-induced gene expression over a time course of 4 hours to 32 days. We then used bioinformatics tools to cluster genes into similar expression patterns and created groups of genes with common functions or signaling pathways.