- Browse by Subject
Browsing by Subject "Mechanical"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item 2D transition metal carbides (MXenes) in metal and ceramic matrix composites(Springer, 2021-06-02) Wyatt, Brian C.; Nemani, Srinivasa Kartik; Anasori, Babak; Mechanical and Energy Engineering, School of Engineering and TechnologyTwo-dimensional transition metal carbides, nitrides, and carbonitrides (known as MXenes) have evolved as competitive materials and fillers for developing composites and hybrids for applications ranging from catalysis, energy storage, selective ion filtration, electromagnetic wave attenuation, and electronic/piezoelectric behavior. MXenes’ incorporation into metal matrix and ceramic matrix composites is a growing field with significant potential due to their impressive mechanical, electrical, and chemical behavior. With about 50 synthesized MXene compositions, the degree of control over their composition and structure paired with their high-temperature stability is unique in the field of 2D materials. As a result, MXenes offer a new avenue for application driven design of functional and structural composites with tailorable mechanical, electrical, and thermochemical properties. In this article, we review recent developments for use of MXenes in metal and ceramic composites and provide an outlook for future research in this field.Item Effects of Raloxifene and tibial loading on bone mass and mechanics in male and female mice(Taylor & Francis, 2022) Berman, Alycia G.; Damrath, John G.; Hatch, Jennifer; Pulliam, Alexis N.; Powell, Katherine M.; Hinton, Madicyn; Wallace, Joseph M.; Biomedical Engineering, School of Engineering and TechnologyRaloxifene (RAL) is a selective estrogen receptor modulator (SERM) that has previously been shown to cause acellular benefits to bone tissue. Due to these improvements, RAL was combined with targeted tibial loading to assess if RAL treatment during periods of active bone formation would allow for further mechanical enhancements. To do so, structural, mechanical, and microstructural effects were assessed in bone from C57BL/6 mice that were treated with RAL (0.5 mg/kg), tibial loading, or both for 6 weeks, beginning at 10 weeks of age. Ex vivo microcomputed tomography (CT) images indicated RAL and loading work together to improve bone mass and architecture, especially within the cancellous region of males. Increases in cancellous bone volume fraction were heavily driven by increases in trabecular thickness, though there were some effects on trabecular spacing and number. In the cortical regions, RAL and loading both increased cross-sectional area, cortical area, and cortical thickness. Whole-bone mechanical testing primarily indicated effects of loading. Further characterization through Raman spectroscopy and nanoindentation showed load-based changes in mineralization and micromechanics, while both loading and RAL caused changes in the secondary collagen structure. In contrast to males, in females, there were large load-based effects in the cancellous and cortical regions, resulting in increased whole-bone mechanical properties. RAL had less of an effect on cancellous and cortical architecture, though some effects were still present. In conclusion, RAL and loading work together to impact bone architecture and mechanical integrity, leading to greater improvements than either treatment individually.Item Mechanical power in pediatric acute respiratory distress syndrome: a PARDIE study(Springer Nature, 2022-01-03) Bhalla, Anoopindar K.; Klein, Margaret J.; Alapont, Vicent Modesto I.; Emeriaud, Guillaume; Kneyber, Martin C. J.; Medina, Alberto; Cruces, Pablo; Diaz, Franco; Takeuchi, Muneyuki; Maddux, Aline B.; Mourani, Peter M.; Camilo, Cristina; White, Benjamin R.; Yehya, Nadir; Pappachan, John; Di Nardo, Matteo; Shein, Steven; Newth, Christopher; Khemani, Robinder; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network; Pediatrics, School of MedicineBackground: Mechanical power is a composite variable for energy transmitted to the respiratory system over time that may better capture risk for ventilator-induced lung injury than individual ventilator management components. We sought to evaluate if mechanical ventilation management with a high mechanical power is associated with fewer ventilator-free days (VFD) in children with pediatric acute respiratory distress syndrome (PARDS). Methods: Retrospective analysis of a prospective observational international cohort study. Results: There were 306 children from 55 pediatric intensive care units included. High mechanical power was associated with younger age, higher oxygenation index, a comorbid condition of bronchopulmonary dysplasia, higher tidal volume, higher delta pressure (peak inspiratory pressure-positive end-expiratory pressure), and higher respiratory rate. Higher mechanical power was associated with fewer 28-day VFD after controlling for confounding variables (per 0.1 J·min-1·Kg-1 Subdistribution Hazard Ratio (SHR) 0.93 (0.87, 0.98), p = 0.013). Higher mechanical power was not associated with higher intensive care unit mortality in multivariable analysis in the entire cohort (per 0.1 J·min-1·Kg-1 OR 1.12 [0.94, 1.32], p = 0.20). But was associated with higher mortality when excluding children who died due to neurologic reasons (per 0.1 J·min-1·Kg-1 OR 1.22 [1.01, 1.46], p = 0.036). In subgroup analyses by age, the association between higher mechanical power and fewer 28-day VFD remained only in children < 2-years-old (per 0.1 J·min-1·Kg-1 SHR 0.89 (0.82, 0.96), p = 0.005). Younger children were managed with lower tidal volume, higher delta pressure, higher respiratory rate, lower positive end-expiratory pressure, and higher PCO2 than older children. No individual ventilator management component mediated the effect of mechanical power on 28-day VFD. Conclusions: Higher mechanical power is associated with fewer 28-day VFDs in children with PARDS. This association is strongest in children < 2-years-old in whom there are notable differences in mechanical ventilation management. While further validation is needed, these data highlight that ventilator management is associated with outcome in children with PARDS, and there may be subgroups of children with higher potential benefit from strategies to improve lung-protective ventilation. Take home message: Higher mechanical power is associated with fewer 28-day ventilator-free days in children with pediatric acute respiratory distress syndrome. This association is strongest in children <2-years-old in whom there are notable differences in mechanical ventilation management.Item Treadmill running and targeted tibial loading differentially improve bone mass in mice(Elsevier, 2019-06-01) Berman, Alycia G.; Hinton, Madicyn J.; Wallace, Joseph M.; Biomedical Engineering, School of Engineering and TechnologyTreadmill running and tibial loading are two common modalities used to assess the role of mechanical stimulation on the skeleton preclinically. The primary advantage of treadmill running is its physiological relevance. However, the applied load is complex and multiaxial, with observed results influenced by cardiovascular and musculoskeletal effects. In contrast, with tibial loading, a direct uniaxial load is applied to a single bone, providing the advantage of greater control but with less physiological relevance. Despite the importance and wide-spread use of both modalities, direct comparisons are lacking. In this study, we compared effects of targeted tibial loading, treadmill running, and their combination on cancellous and cortical architecture in a murine model. We show that tibial loading and treadmill running differentially improve bone mass, with tibial loading resulting in thicker trabeculae and increased cortical mass, and exercise resulting in greater number of trabeculae and no cortical mass-based effects. Combination of the modalities resulted in an additive response. These data suggest that tibial loading and exercise may improve mass differentially.