- Browse by Subject
Browsing by Subject "Magnetic resonance imaging (MRI)"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Age-dependent microstructure alterations in 5xFAD mice by high-resolution diffusion tensor imaging(Frontiers Media, 2022-08-17) Maharjan, Surendra; Tsai, Andy P.; Lin, Peter B.; Ingraham, Cynthia; Jewett, Megan R.; Landreth, Gary E.; Oblak, Adrian L.; Wang, Nian; Radiology and Imaging Sciences, School of MedicinePurpose: To evaluate the age-dependent microstructure changes in 5xFAD mice using high-resolution diffusion tensor imaging (DTI). Methods: The 5xFAD mice at 4, 7.5, and 12 months and the wild-type controls at 4 months were scanned at 9.4T using a 3D echo-planar imaging (EPI) pulse sequence with the isotropic spatial resolution of 100 μm. The b-value was 3000 s/mm2 for all the diffusion MRI scans. The samples were also acquired with a gradient echo pulse sequence at 50 μm isotropic resolution. The microstructure changes were quantified with DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD). The conventional histology was performed to validate with MRI findings. Results: The FA values (p = 0.028) showed significant differences in the cortex between wild-type (WT) and 5xFAD mice at 4 months, while hippocampus, anterior commissure, corpus callosum, and fornix showed no significant differences for either FA and MD. FA values of 5xFAD mice gradually decreased in cortex (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) and fornix (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) with aging. Both FA (p = 0.029) and MD (p = 0.037) demonstrated significant differences in corpus callosum between 4 and 12 months age old. FA and MD were not significantly different in the hippocampus or anterior commissure. The age-dependent microstructure alterations were better captured by FA when compared to MD. Conclusion: FA showed higher sensitivity to monitor amyloid deposition in 5xFAD mice. DTI may be utilized as a sensitive biomarker to monitor beta-amyloid progression for preclinical studies.Item Brain gray matter reduction and premature brain aging after breast cancer chemotherapy: a longitudinal multicenter data pooling analysis(Springer, 2023) de Ruiter, Michiel B.; Deardorff, Rachael L.; Blommaert, Jeroen; Chen, Bihong T.; Dumas, Julie A.; Schagen, Sanne B.; Sunaert, Stefan; Wang, Lei; Cimprich, Bernadine; Peltier, Scott; Dittus, Kim; Newhouse, Paul A.; Silverman, Daniel H.; Schroyen, Gwen; Deprez, Sabine; Saykin, Andrew J.; McDonald, Brenna C.; Radiology and Imaging Sciences, School of MedicineBrain gray matter (GM) reductions have been reported after breast cancer chemotherapy, typically in small and/or cross-sectional cohorts, most commonly using voxel-based morphometry (VBM). There has been little examination of approaches such as deformation-based morphometry (DBM), machine-learning-based brain aging metrics, or the relationship of clinical and demographic risk factors to GM reduction. This international data pooling study begins to address these questions. Participants included breast cancer patients treated with (CT+, n = 183) and without (CT-, n = 155) chemotherapy and noncancer controls (NC, n = 145), scanned pre- and post-chemotherapy or comparable intervals. VBM and DBM examined GM volume. Estimated brain aging was compared to chronological aging. Correlation analyses examined associations between VBM, DBM, and brain age, and between neuroimaging outcomes, baseline age, and time since chemotherapy completion. CT+ showed longitudinal GM volume reductions, primarily in frontal regions, with a broader spatial extent on DBM than VBM. CT- showed smaller clusters of GM reduction using both methods. Predicted brain aging was significantly greater in CT+ than NC, and older baseline age correlated with greater brain aging. Time since chemotherapy negatively correlated with brain aging and annual GM loss. This large-scale data pooling analysis confirmed findings of frontal lobe GM reduction after breast cancer chemotherapy. Milder changes were evident in patients not receiving chemotherapy. CT+ also demonstrated premature brain aging relative to NC, particularly at older age, but showed evidence for at least partial GM recovery over time. When validated in future studies, such knowledge could assist in weighing the risks and benefits of treatment strategies.Item COMPARISON OF BRAIN METABOLITE CHANGES IN MANGANESE-EXPOSED WELDERS AND SMELTERS(Office of the Vice Chancellor for Research, 2012-04-13) Long, Zaiyang; Jiang, Yueming; Li, Xiangrong; Xu, Jun; Long, Liling; Zheng, Wei; Murdoch, James; Dydak, UlrikeExcessive manganese (Mn) exposure is known to cause cognitive, psychiatric and motor deficits. Mn overexposure occurs in different occupational settings, where the type and level of exposure may vary. Magnetic resonance imaging (MRI) and spectroscopy (MRS) can be used to evaluate brain Mn accumulation and to measure Mn-induced metabolite changes non-invasively. The aim of this study was to compare metabolite changes among different brain regions of welders and smelters following occupational Mn exposure. Nine Mn-exposed smelters, 14 Mn-exposed welders and 23 male matched controls were recruited from a cohort of workers from two factories in China (mean airborne Mn level: 0.227 and 0.025 mg/m3 for smelters and welders, respectively). Short-echo-time 1H MRS spectra were acquired in each subject from four volumes of interest: the frontal cortex, posterior cingulate cortex, hippocampus, and thalamus. We found that 1) in the frontal cortex, significantly decreased creatine (Cr), glutamate (Glu) and glutathione (GSH) were found in welders, whereas decreased Glu was found in smelters as compared to controls. 2) In the thalamus, reduced myo-inositol was found in both smelters and welders, while Glu and GSH were decreased in welders. These results suggest that Mn-induced brain metabolite changes may be regional in nature and more extensive in welders than in smelters. The frontal cortex seems to show a more profound change than the other brain areas tested among Mn exposed subjects. Further studies are needed to investigate the effects of exposure type and length on the mechanism of Mn neurotoxicity. (Supported by NIH/NIEHS R21 ES-017498, National Science Foundation of China Grant #81072320 and 30760210).Item CT and MRI imaging and interpretation of hepatic arterioportal shunts(AME Publishing Company, 2019-05-21) Wang, Qiushi; Koniaris, Leonidas G.; Milgrom, Daniel P.; Patel, Aash; Hu, Maoqing; Cui, Enming; Deng, Yu; Akisik, Fatih; Radiology and Imaging Sciences, School of MedicineHepatic arterioportal shunts (HAPS) occur due to organic or functional fistulization of blood flow between arterial hepatic vasculature and venous portal systems. It is a type of hemodynamic abnormality of the liver being observed increasingly with the use of temporal imaging modalities. HAPS occur due to other underlying hepatic abnormalities including the presence of an underlying tumor or malignancy. When a HAPS is present, the appearance of these abnormalities on imaging studies suggests an underlying abnormality, must be considered atypical even if asymptomatic, and warrants careful evaluation. Over time, and as a function of degree of fistulae, symptoms and potential life-threatening complications may arise from the HAPS. These systemic complications may include the development of portal hypertension, splenomegaly, as well as accelerated metastasis in patients with malignant tumors. This manuscript reviews common underlying conditions associated with HAPS and their radiologic interpretation.Item The effect of the top 20 Alzheimer disease risk genes on gray-matter density and FDG PET brain metabolism(Elsevier, 2016-12-19) Stage, Eddie; Duran, Tugce; Risacher, Shannon L.; Goukasian, Naira; Do, Triet M.; West, John D.; Wilhalme, Holly; Nho, Kwangsik; Phillips, Meredith; Elashoff, David; Saykin, Andrew J.; Apostolova, Liana G.; Department of Neurology, IU School of MedicineINTRODUCTION: We analyzed the effects of the top 20 Alzheimer disease (AD) risk genes on gray-matter density (GMD) and metabolism. METHODS: We ran stepwise linear regression analysis using posterior cingulate hypometabolism and medial temporal GMD as outcomes and all risk variants as predictors while controlling for age, gender, and APOE ε4 genotype. We explored the results in 3D using Statistical Parametric Mapping 8. RESULTS: Significant predictors of brain GMD were SLC24A4/RIN3 in the pooled and mild cognitive impairment (MCI); ZCWPW1 in the MCI; and ABCA7, EPHA1, and INPP5D in the AD groups. Significant predictors of hypometabolism were EPHA1 in the pooled, and SLC24A4/RIN3, NME8, and CD2AP in the normal control group. DISCUSSION: Multiple variants showed associations with GMD and brain metabolism. For most genes, the effects were limited to specific stages of the cognitive continuum, indicating that the genetic influences on brain metabolism and GMD in AD are complex and stage dependent.Item Lecanemab: Appropriate Use Recommendations(Springer, 2023) Cummings, J.; Apostolova, L.; Rabinovici, G. D.; Atri, A.; Aisen, P.; Greenberg, S.; Hendrix, S.; Selkoe, D.; Weiner, M.; Petersen, R. C.; Salloway, S.; Neurology, School of MedicineLecanemab (Leqembi®) is approved in the United States for the treatment of Alzheimer's disease (AD) to be initiated in early AD (mild cognitive impairment [MCI] due to AD or mild AD dementia) with confirmed brain amyloid pathology. Appropriate Use Recommendations (AURs) are intended to help guide the introduction of new therapies into real-world clinical practice. Community dwelling patients with AD differ from those participating in clinical trials. Administration of lecanemab at clinical trial sites by individuals experienced with monoclonal antibody therapy also differs from the community clinic-based administration of lecanemab. These AURs use clinical trial data as well as research and care information regarding AD to help clinicians administer lecanemab with optimal safety and opportunity for effectiveness. Safety and efficacy of lecanemab are known only for patients like those participating in the phase 2 and phase 3 lecanemab trials, and these AURs adhere closely to the inclusion and exclusion criteria of the trials. Adverse events may occur with lecanemab including amyloid related imaging abnormalities (ARIA) and infusion reactions. Monitoring guidelines for these events are detailed in this AUR. Most ARIA with lecanemab is asymptomatic, but a few cases are serious or, very rarely, fatal. Microhemorrhages and rare macrohemorrhages may occur in patients receiving lecanemab. Anticoagulation increases the risk of hemorrhage, and the AUR recommends that patients requiring anticoagulants not receive lecanemab until more data regarding this interaction are available. Patients who are apolipoprotein E ε4 (APOE4) gene carriers, especially APOE4 homozygotes, are at higher risk for ARIA, and the AUR recommends APOE genotyping to better inform risk discussions with patients who are lecanemab candidates. Clinician and institutional preparedness are mandatory for use of lecanemab, and protocols for management of serious events should be developed and implemented. Communication between clinicians and therapy candidates or those on therapy is a key element of good clinical practice for the use of lecanemab. Patients and their care partners must understand the potential benefits, the potential harms, and the monitoring requirements for treatment with this agent. Culture-specific communication and building of trust between clinicians and patients are the foundation for successful use of lecanemab.Item Recent Perceived Stress, Amygdala Reactivity to Acute Psychosocial Stress, and Alcohol and Cannabis Use in Adolescents and Young Adults With Bipolar Disorder(Frontiers Media, 2021-11-15) Le, Vanessa; Kirsch, Dylan E.; Tretyak, Valeria; Weber, Wade; Strakowski, Stephen M.; Lippard, Elizabeth T. C.; Psychiatry, School of MedicineBackground: Psychosocial stress negatively affects the clinical course of bipolar disorder. Studies primarily focused on adults with bipolar disorder suggest the impact of stress is progressive, i.e., stress response sensitizes with age. Neural mechanisms underlying stress sensitization are unknown. As stress-related mechanisms contribute to alcohol/substance use disorders, variation in stress response in youth with bipolar disorder may contribute to development of co-occurring alcohol/substance use disorders. This study investigated relations between psychosocial stress, amygdala reactivity, and alcohol and cannabis use in youth with bipolar disorder, compared to typically developing youth. Methods: Forty-two adolescents/young adults [19 with bipolar disorder, 23 typically developing, 71% female, agemean ± SD = 21 ± 2 years] completed the Perceived Stress Scale (PSS), Daily Drinking Questionnaire modified for heaviest drinking week, and a modified Montreal Imaging Stress functional MRI Task. Amygdala activation was measured for both the control and stress conditions. Main effects of group, condition, total PSS, and their interactions on amygdala activation were modeled. Relationships between amygdala response to acute stress with recent alcohol/cannabis use were investigated. Results: Greater perceived stress related to increased right amygdala activation in response to the stress, compared to control, condition in bipolar disorder, but not in typically developing youth (group × condition × PSS interaction, p = 0.02). Greater amygdala reactivity to acute stress correlated with greater quantity and frequency of alcohol use and frequency of cannabis use in bipolar disorder. Conclusion: Recent perceived stress is associated with changes in amygdala activation during acute stress with amygdala reactivity related to alcohol/cannabis use in youth with bipolar disorder.