- Browse by Subject
Browsing by Subject "Magnetic Resonance Spectroscopy"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Carbon-13 magnetic resonance studies of aldolase-substrate interactions(1982) Ray, Bruce DavidItem Comparison of Multivendor Single-Voxel MR Spectroscopy Data Acquired in Healthy Brain at 26 Sites(Radiological Society of North America, 2020-04) Považan, Michal; Mikkelsen, Mark; Berrington, Adam; Bhattacharyya, Pallab K.; Brix, Maiken K.; Buur, Pieter F.; Cecil, Kim M.; Chan, Kimberly L.; Chen, David Y.T.; Craven, Alexander R.; Cuypers, Koen; Dacko, Michael; Duncan, Niall W.; Dydak, Ulrike; Edmondson, David A.; Ende, Gabriele; Ersland, Lars; Forbes, Megan A.; Gao, Fei; Greenhouse, Ian; Harris, Ashley D.; He, Naying; Heba, Stefanie; Hoggard, Nigel; Hsu, Tun-Wei; Jansen, Jacobus F.A.; Kangarlu, Alayar; Lange, Thomas; Lebel, R. Marc; Li, Yan; Lin, Chien-Yuan E.; Liou, Jy-Kang; Lirng, Jiing-Feng; Liu, Feng; Long, Joanna R.; Ma, Ruoyun; Maes, Celine; Moreno-Ortega, Marta; Murray, Scott O.; Noah, Sean; Noeske, Ralph; Noseworthy, Michael D.; Oeltzschner, Georg; Porges, Eric C.; Prisciandaro, James J.; Puts, Nicolaas A.J.; Roberts, Timothy P.L.; Sack, Markus; Sailasuta, Napapon; Saleh, Muhammad G.; Schallmo, Michael-Paul; Simard, Nicholas; Stoffers, Diederick; Swinnen, Stephan P.; Tegenthoff, Martin; Truong, Peter; Wang, Guangbin; Wilkinson, Iain D.; Wittsack, Hans-Jörg; Woods, Adam J.; Xu, Hongmin; Yan, Fuhua; Zhang, Chencheng; Zipunnikov, Vadim; Zöllner, Helge J.; Edden, Richard A.E.; Barker, Peter B.; Radiology and Imaging Sciences, School of MedicineThe hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence. Materials and Methods An MR spectroscopy protocol to acquire short-echo-time PRESS data from the midparietal region of the brain was disseminated to 26 research sites operating 3.0-T MR scanners from three different vendors. In this prospective study, healthy participants were scanned between July 2016 and December 2017. Data were analyzed by using software with simulated basis sets customized for each vendor implementation. The proportion of total variance attributed to vendor-, site-, and participant-related effects was estimated by using a linear mixed-effects model. P values were derived through parametric bootstrapping of the linear mixed-effects models (denoted Pboot). Results In total, 296 participants (mean age, 26 years ± 4.6; 155 women and 141 men) were scanned. Good-quality data were recorded from all sites, as evidenced by a consistent linewidth of N-acetylaspartate (range, 4.4-5.0 Hz), signal-to-noise ratio (range, 174-289), and low Cramér-Rao lower bounds (≤5%) for all of the major metabolites. Among the major metabolites, no vendor effects were found for levels of myo-inositol (Pboot > .90), N-acetylaspartate and N-acetylaspartylglutamate (Pboot = .13), or glutamate and glutamine (Pboot = .11). Among the smaller resonances, no vendor effects were found for ascorbate (Pboot = .08), aspartate (Pboot > .90), glutathione (Pboot > .90), or lactate (Pboot = .28). Conclusion Multisite multivendor single-voxel MR spectroscopy studies performed at 3.0 T can yield results that are coherent across vendors, provided that vendor differences in pulse sequence implementation are accounted for in data analysis. However, the site-related effects on variability were more profound and suggest the need for further standardization of spectroscopic protocols.Item Effects of Alcohol Cues on MRS Glutamate Levels in the Anterior Cingulate(Oxford University Press, 2018-05-01) Cheng, Hu; Kellar, Derek; Lake, Allison; Finn, Peter; Rebec, George V.; Dharmadhikari, Shalmali; Dydak, Ulrike; Newman, Sharlene; Radiology and Imaging Sciences, School of MedicineGrowing evidence suggests that glutamate neurotransmission plays a critical role in alcohol addiction. Cue-induced change of glutamate has been observed in animal studies but never been investigated in humans. This work investigates cue-induced change in forebrain glutamate in individuals with alcohol use disorder (AUD). A total of 35 subjects (17 individuals with AUD and 18 healthy controls) participated in this study. The glutamate concentration was measured with single-voxel 1H-MR spectroscopy at the dorsal anterior cingulate. Two MRS sessions were performed in succession, the first to establish basal glutamate levels and the second to measure the change in response to alcohol cues. The changes in glutamate were quantified for both AUD subjects and controls. A mixed model ANOVA and t-tests were performed for statistical analysis. ANOVA revealed a main effect of cue-induced decrease of glutamate level in the anterior cingulate cortex (ACC). A significant interaction revealed that only AUD subjects showed significant decrease of glutamate in the ACC. There were no significant group differences in the level of basal glutamate. However, a negative correlation was found between the basal glutamate level and the number of drinking days in the past 2 weeks for the AUD subjects. Collectively, our results indicate that glutamate in key areas of the forebrain reward circuit is modulated by alcohol cues in early alcohol dependence.Item NMR metabolomics of cerebrospinal fluid differentiates inflammatory diseases of the central nervous system(PLOS, 2018-12-17) French, Caitlin D.; Willoughby, Rodney E.; Pan, Amy; Wong, Susan J.; Foley, John F.; Wheat, L. Joseph; Fernandez, Josefina; Encarnacion, Rafael; Ondrush, Joanne M.; Fatteh, Naaz; Paez, Andres; David, Dan; Javaid, Waleed; Amzuta, Ioana G.; Neilan, Anne M.; Robbins, Gregory K.; Brunner, Andrew M.; Hu, William T.; Mishchuk, Darya O.; Slupsky, Carolyn M.; Medicine, School of MedicineBACKGROUND: Myriad infectious and noninfectious causes of encephalomyelitis (EM) have similar clinical manifestations, presenting serious challenges to diagnosis and treatment. Metabolomics of cerebrospinal fluid (CSF) was explored as a method of differentiating among neurological diseases causing EM using a single CSF sample. METHODOLOGY/PRINCIPAL FINDINGS: 1H NMR metabolomics was applied to CSF samples from 27 patients with a laboratory-confirmed disease, including Lyme disease or West Nile Virus meningoencephalitis, multiple sclerosis, rabies, or Histoplasma meningitis, and 25 controls. Cluster analyses distinguished samples by infection status and moderately by pathogen, with shared and differentiating metabolite patterns observed among diseases. CART analysis predicted infection status with 100% sensitivity and 93% specificity. CONCLUSIONS/SIGNIFICANCE: These preliminary results suggest the potential utility of CSF metabolomics as a rapid screening test to enhance diagnostic accuracies and improve patient outcomes.Item Perturbed neurochemical and microstructural organization in a mouse model of prenatal opioid exposure: A multi-modal magnetic resonance study(Public Library of Science, 2023-07-20) Shahid, Syed Salman; Grecco, Gregory G.; Atwood, Brady K.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineMethadone-based treatment for pregnant women with opioid use disorder is quite prevalent in the clinical environment. A number of clinical and animal model-based studies have reported cognitive deficits in infants prenatally exposed to methadone-based opioid treatments. However, the long-term impact of prenatal opioid exposure (POE) on pathophysiological mechanisms that govern neurodevelopmental impairment is not well understood. Using a translationally relevant mouse model of prenatal methadone exposure (PME), the aim of this study is to investigate the role of cerebral biochemistry and its possible association with regional microstructural organization in PME offspring. To understand these effects, 8-week-old male offspring with PME (n = 7) and prenatal saline exposure (PSE) (n = 7) were scanned in vivo on 9.4 Tesla small animal scanner. Single voxel proton magnetic resonance spectroscopy (1H-MRS) was performed in the right dorsal striatum (RDS) region using a short echo time (TE) Stimulated Echo Acquisition Method (STEAM) sequence. Neurometabolite spectra from the RDS was first corrected for tissue T1 relaxation and then absolute quantification was performed using the unsuppressed water spectra. High-resolution in vivo diffusion MRI (dMRI) for region of interest (ROI) based microstructural quantification was also performed using a multi-shell dMRI sequence. Cerebral microstructure was characterized using diffusion tensor imaging (DTI) and Bingham-neurite orientation dispersion and density imaging (Bingham-NODDI). MRS results in the RDS showed significant decrease in N-acetyl aspartate (NAA), taurine (tau), glutathione (GSH), total creatine (tCr) and glutamate (Glu) concentration levels in PME, compared to PSE group. In the same RDS region, mean orientation dispersion index (ODI) and intracellular volume fraction (VFIC) demonstrated positive associations with tCr in PME group. ODI also exhibited significant positive association with Glu levels in PME offspring. Significant reduction in major neurotransmitter metabolites and energy metabolism along with strong association between the neurometabolites and perturbed regional microstructural complexity suggest a possible impaired neuroadaptation trajectory in PME offspring which could be persistent even into late adolescence and early adulthood.