- Browse by Subject
Browsing by Subject "MXenes"
Now showing 1 - 10 of 21
Results Per Page
Sort Options
Item 2D metal carbides and nitrides (MXenes) for energy storage(Nature Publishing Group, 2017-01-17) Anasori, Babak; Lukatskaya, Maria R.; Gogotsi, Yury; Mechanical Engineering and Energy, School of Engineering and TechnologyThe family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.Item 2D MXenes: Tunable Mechanical and Tribological Properties(Wiley, 2021-04-28) Wyatt, Brian C.; Rosenkranz, Andreas; Anasori, Babak; Mechanical and Energy Engineering, School of Engineering and Technology2D transition metal carbides, nitrides, and carbonitrides, known as MXenes, were discovered in 2011 and have grown to prominence in energy storage, catalysis, electromagnetic interference shielding, wireless communications, electronic, sensors, and environmental and biomedical applications. In addition to their high electrical conductivity and electrochemically active behavior, MXenes' mechanical properties, flexibility, and strong adhesion properties play crucial roles in almost all of these growing applications. Although these properties prove to be critical in MXenes' impressive performance, the mechanical and tribological understanding of MXenes, as well as their relation to the synthesis process, is yet to be fully explored. Here, a fundamental overview of MXenes' mechanical and tribological properties is provided and the effects of MXenes' compositions, synthesis, and processing steps on these properties are discussed. Additionally, a critical perspective of the compositional control of MXenes for innovative structural, low-friction, and low-wear performance in current and upcoming applications of MXenes is provided. It is established here that the fundamental understanding of MXenes' mechanical and tribological behavior is essential for their quickly growing applications.Item 2D transition metal carbides (MXenes) in metal and ceramic matrix composites(Springer, 2021-06-02) Wyatt, Brian C.; Nemani, Srinivasa Kartik; Anasori, Babak; Mechanical and Energy Engineering, School of Engineering and TechnologyTwo-dimensional transition metal carbides, nitrides, and carbonitrides (known as MXenes) have evolved as competitive materials and fillers for developing composites and hybrids for applications ranging from catalysis, energy storage, selective ion filtration, electromagnetic wave attenuation, and electronic/piezoelectric behavior. MXenes’ incorporation into metal matrix and ceramic matrix composites is a growing field with significant potential due to their impressive mechanical, electrical, and chemical behavior. With about 50 synthesized MXene compositions, the degree of control over their composition and structure paired with their high-temperature stability is unique in the field of 2D materials. As a result, MXenes offer a new avenue for application driven design of functional and structural composites with tailorable mechanical, electrical, and thermochemical properties. In this article, we review recent developments for use of MXenes in metal and ceramic composites and provide an outlook for future research in this field.Item Covalent Surface Modification of Ti3C2Tx MXene with Chemically Active Polymeric Ligands Producing Highly Conductive and Ordered Microstructure Films(American Chemical Society (ACS), 2021-11-17) Lee, Jacob T.; Wyatt, Brian C.; Davis, Gregory A., Jr.; Masterson, Adrianna N.; Pagan, Amber L.; Shah, Archit; Anasori, Babak; Sardar, Rajesh; Chemistry, School of ScienceAs interest continues to grow in Ti3C2Tx and other related MXenes, advancement in methods of manipulation of their surface functional groups beyond synthesis-based surface terminations (Tx: −F, −OH, and ═O) can provide mechanisms to enhance solution processability as well as produce improved solid-state device architectures and coatings. Here, we report a chemically important surface modification approach in which “solvent-like” polymers, polyethylene glycol carboxylic acid (PEG6-COOH), are covalently attached onto MXenes via esterification chemistry. Surface modification of Ti3C2Tx with PEG6-COOH with large ligand loading (up to 14% by mass) greatly enhances dispersibility in a wide range of nonpolar organic solvents (e.g., 2.88 mg/mL in chloroform) without oxidation of Ti3C2Tx two-dimensional flakes or changes in the structure ordering. Furthermore, cooperative interactions between polymer chains improve the nanoscale assembly of uniform microstructures of stacked MXene-PEG6 flakes into ordered thin films with excellent electrical conductivity (∼16,200 S·cm–1). Most importantly, our covalent surface modification approach with ω-functionalized PEG6 ligands (ω-PEG6-COOH, where ω: −NH2, −N3, −CH═CH2) allows for control over the degree of functionalization (incorporation of valency) of MXene. We believe that installing valency onto MXenes through short, ion conducting PEG ligands without compromising MXenes’ features such as solution processability, structural stability, and electrical conductivity further enhance MXenes surface chemistry tunability and performance and widens their applications.Item Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides(Cambridge UP, 2020-10) Hong, Weichen; Wyatt, Brian C.; Nemani, Srinivasa Kartik; Anasori, Babak; Mechanical Engineering and Energy, School of Engineering and TechnologyMXenes are a large family of two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides. The MXene family has expanded since their original discovery in 2011, and has grown larger with the discovery of ordered double transition-metal (DTM) MXenes. These DTM MXenes differ from their counterpart mono-transition-metal (mono-M) MXenes, where two transition metals can occupy the metal sites. Ordered DTM MXenes are comprised of transition metals in either an in-plane or out-of-plane ordered structure. Additionally, some DTM MXenes are in the form of random solid solutions, which are defined by two randomly distributed transition metals throughout the 2D structure. Their different structures and array of transition-metal pairs provide the ability to tune DTM MXenes for specific optical, magnetic, electrochemical, thermoelectric, catalytic, or mechanical behavior. This degree of control over their composition and structure is unique in the field of 2D materials and offers a new avenue for application-driven design of functional nanomaterials. In this article, we review the synthesis, structure, and properties of DTM MXenes and provide an outlook for future research in this field.Item Effect of vacancies and edges in promoting water chemisorption on titanium-based MXenes(Springer, 2023-04-01) Marquis, Edoardo; Benini, Francesca; Anasori, Babak; Rosenkranz, Andreas; Righi, Maria Clelia; Mechanical and Energy Engineering, School of Engineering and TechnologyThe functionality of two-dimensional (2D) transition metal carbides and nitrides (MXenes) in technological applications greatly depends on their wettability. For instance, MXenes' layer stability against degradative oxidation is notably reduced when stored in aqueous solutions, leading to the transformation into oxides. In this work, we study water adsorption on Ti-based MXenes by ab initio calculations. The energy gains for the molecular adsorption on Tin+1XnT2 is evaluated as a function of the termination (T = F, O, OH, mixture), the carbon/nitrogen ratio (X = C, N), the layer thickness (n) and water coverage. MXenes' hydrophilicity tends to increase due to the presence of defects as vacancies and flake edges. We demonstrate that physical adsorption occurs through hydrogen bonding on both defect-free layers and layers containing C/N or Ti atomic vacancies, with -OH terminations providing the strongest interactions (0.40-0.65 eV). In contrast, strong water chemisorption is observed on surfaces with a single termination vacancy (0.60-1.20 eV), edges (0.75-0.85 eV), and clusters of defects (1.00-1.80 eV). We verified that the presence of undercoordinated Ti atoms on the surface is the key factor in promoting H2O chemisorption, i.e., the degradative oxidation.Item Evidence of a magnetic transition in atomically thin Cr2TiC2Tx MXene(Royal Society of Chemistry, 2020-12) Hantanasirisakul, Kanit; Anasori, Babak; Nemsak, Slavomir; Hart, James L.; Wu, Jiabin; Yang, Yizhou; Chopdekar, Rajesh V.; Shafer, Padraic; May, Andrew F.; Moon, Eun Ju; Zhou, Jun; Zhang, Qinghua; Taheri, Mitra L.; May, Steven J.; Gogotsi, Yury; Mechanical and Energy Engineering, School of Engineering and TechnologyTwo-dimensional (2D) transition metal carbides and nitrides known as MXenes have shown attractive functionalities such as high electronic conductivity, a wide range of optical properties, versatile transition metal and surface chemistry, and solution processability. Although extensively studied computationally, the magnetic properties of this large family of 2D materials await experimental exploration. 2D magnetic materials have recently attracted significant interest as model systems to understand low-dimensional magnetism and for potential spintronic applications. Here, we report on synthesis of Cr2TiC2Tx MXene and a detailed study of its magnetic as well as electronic properties. Using a combination of magnetometry, synchrotron X-ray linear dichroism, and field- and angular-dependent magnetoresistance measurements, we find clear evidence of a magnetic transition in Cr2TiC2Tx at approximately 30 K, which is not present in its bulk layered carbide counterpart (Cr2TiAlC2 MAX phase). This work presents the first experimental evidence of a magnetic transition in a MXene material and provides an exciting opportunity to explore magnetism in this large family of 2D materials.Item High temperature phase behavior of 2D transition metal carbides(2024-08) Wyatt, Brian C.; Anasori, Babak; Trice, Rodney; Zhang, Jing; Hood, ZacharyThe technological drive of humanity to explore the cosmos, travel at hypersonic speeds, and pursue clean energy solutions requires ceramic scientists and engineers to constantly push materials to their functional, behavioral, and chemical extremes. Ultra-high temperature ceramics, and particularly transition metal carbides, are promising materials to meet the demands of extreme environment materials with their >4000 °C melting temperature and impressive thermomechanical behaviors in extreme conditions. The advent of the 2D version of these transition metal carbides, known as MXenes, added a new direction to design transition metal carbides for energy, catalysis, flexible electronics, and other applications. Toward extreme conditions, although MXenes remain yet unexplored, we believe that the ~1 nm flakes of MXenes gives ceramics scientists and engineers the ability to truly engineer transition metal carbides layer-by-layer at the nanoscale to endure the extreme conditions required by future harsh environment technology. Although MXenes have this inherent promise, fundamental study of their behavior in high-temperature environments is necessary to understand how their chemistry and 2D nature affects the high- temperature stability and phase behavior of MXenes toward application in extreme environments. In this dissertation, we investigate the high-temperature phase behavior of 2D MXenes in high temperature inert environments to understand the stability and phase transition behavior of MXenes. In this work, we demonstrate that 1) MXenes’ transition at high-temperatures is to highly textured transition metal carbides is due to the homoepitaxial growth of these phases onto ~1-nm- thick MXenes’ highly exposed basal plane, 2) the MXene to MXene interface plays a major role in the phase behavior of MXenes, particularly toward building layered transition metal carbides using MXenes as ~1-nm-thick building blocks, and 3) Defects are the primary site at which atomic migration begins during phase transition of MXenes into these highly textured transition metal carbides, and these defects can be engineered for different phase stability of MXenes. To do so, we investigate the phase behavior of Ti3C2Tx, Ta4C3Tx, Mo2TiC2Tx, and other MXenes using a combination of in situ x-ray diffraction and scanning transmission electron microscopy and other ex situ methods, such as secondary ion mass spectrometry and x-ray photoelectron spectroscopy, with other methods. By investigating the fundamentals of the high-temperature phase behavior of MXenes, we hope to establish the basic principles behind use of MXenes as the ideal material for application in future extreme environments.Item High-Entropy 2D Carbide MXenes: TiVNbMoC3 and TiVCrMoC3(ACS, 2021-06) Nemani, Srinivasa Kartik; Zhang, Bowen; Wyatt, Brian C.; Hood, Zachary D.; Manna, Sukrita; Khaledialidusti, Rasoul; Hong, Weichen; Sternberg, Michael G.; Sankaranarayanan, Subramanian K. R. S.; Anasori, Babak; Mechanical and Energy Engineering, School of Engineering and TechnologyTwo-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a fast-growing family of 2D materials. MXenes 2D flakes have n + 1 (n = 1–4) atomic layers of transition metals interleaved by carbon/nitrogen layers, but to-date remain limited in composition to one or two transition metals. In this study, by implementing four transition metals, we report the synthesis of multi-principal-element high-entropy M4C3Tx MXenes. Specifically, we introduce two high-entropy MXenes, TiVNbMoC3Tx and TiVCrMoC3Tx, as well as their precursor TiVNbMoAlC3 and TiVCrMoAlC3 high-entropy MAX phases. We used a combination of real and reciprocal space characterization (X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and scanning transmission electron microscopy) to establish the structure, phase purity, and equimolar distribution of the four transition metals in high-entropy MAX and MXene phases. We use first-principles calculations to compute the formation energies and explore synthesizability of these high-entropy MAX phases. We also show that when three transition metals are used instead of four, under similar synthesis conditions to those of the four-transition-metal MAX phase, two different MAX phases can be formed (i.e., no pure single-phase forms). This finding indicates the importance of configurational entropy in stabilizing the desired single-phase high-entropy MAX over multiphases of MAX, which is essential for the synthesis of phase-pure high-entropy MXenes. The synthesis of high-entropy MXenes significantly expands the compositional variety of the MXene family to further tune their properties, including electronic, magnetic, electrochemical, catalytic, high temperature stability, and mechanical behavior.Item High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene(IOP, 2021-06) Wyatt, Brian C.; Nemani, Srinivasa Kartik; Desai, Krishay; Kaur, Harpreet; Zhang, Bowen; Anasori, Babak; Mechanical and Energy Engineering, School of Engineering and TechnologyTwo-dimensional (2D) transition metal carbides, nitrides, and carbonitrides, known as MXenes, are under increasing pressure to meet technological demands in high-temperature applications, as MXenes can be considered to be one of the few ultra-high temperature 2D materials. Although there are studies on the stability of their surface functionalities, there is currently a gap in the fundamental understanding of their phase stability and transformation of MXenes' metal carbide core at high temperatures (>700 °C) in an inert environment. In this study, we conduct systematic annealing of Ti3C2TxMXene films in which we present the 2D MXene flake phase transformation to ordered vacancy superstructure of a bulk three-dimensional (3D) Ti2C and TiCycrystals at 700 °C ⩽T⩽ 1000 °C with subsequent transformation to disordered carbon vacancy cubic TiCyat higher temperatures (T> 1000 °C). We annealed Ti3C2TxMXene films made from the delaminated MXene single-flakes as well as the multi-layer MXene clay in a controlled environment through the use ofin situhot stage x-ray diffraction (XRD) paired with a 2D detector (XRD2) up to 1000 °C andex situannealing in a tube furnace and spark plasma sintering up to 1500 °C. Our XRD2analysis paired with cross-sectional scanning electron microscope imaging indicated the resulting nano-sized lamellar and micron-sized cubic grain morphology of the 3D crystals depend on the starting Ti3C2Txform. While annealing the multi-layer clay Ti3C2TxMXene creates TiCygrains with cubic and irregular morphology, the grains of 3D Ti2C and TiCyformed by annealing Ti3C2TxMXene single-flake films keep MXenes' lamellar morphology. The ultrathin lamellar nature of the 3D grains formed at temperatures >1000 °C can pave way for applications of MXenes as a stable carbide material 2D additive for high-temperature applications.
- «
- 1 (current)
- 2
- 3
- »