- Browse by Subject
Browsing by Subject "MSC"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Characterization of the Cellular Output of a Point-of-Care Device and the Implications for Addressing Critical Limb Ischemia(Mary Ann Liebert, 2015) Woodell-May, Jennifer E.; Tan, Matthew L.; King, William J.; Swift, Matthew J.; Welch, Zachary R.; Murphy, Michael P.; McKale, James M.; Department of Surgery, IU School of MedicineCritical limb ischemia (CLI) is a terminal disease with high morbidity and healthcare costs due to limb loss. There are no effective medical therapies for patients with CLI to prevent amputation. Cell-based therapies are currently being investigated to address this unmet clinical need and have shown promising preliminary results. The purpose of this study was to characterize the output of a point-of-care cell separator (MarrowStim P.A.D. Kit), currently under investigation for the treatment of CLI, and compare its output with Ficoll-based separation. The outputs of the MarrowStim P.A.D. Kit and Ficoll separation were characterized using an automated hematology analyzer, colony-forming unit (CFU) assays, and tubulogenesis assays. Hematology analysis indicated that the MarrowStim P.A.D. Kit concentrated the total nucleated cells, mononuclear cells, and granulocytes compared with baseline bone marrow aspirate. Cells collected were positive for VEGFR-2, CD3, CD14, CD34, CD45, CD56, CD105, CD117, CD133, and Stro-1 antigen. CFU assays demonstrated that the MarrowStim P.A.D. Kit output a significantly greater number of mesenchymal stem cells and hematopoietic stem cells compared with cells output by Ficoll separation. There was no significant difference in the number of endothelial progenitor cells output by the two separation techniques. Isolated cells from both techniques formed interconnected nodes and microtubules in a three-dimensional cell culture assay. This information, along with data currently being collected in large-scale clinical trials, will help instruct how different cellular fractions may affect the outcomes for CLI patients.Item Correction: Sun et al. Generation of the Chondroprotective Proteomes by Activating PI3K and TNFα Signaling. Cancers 2022, 14, 3039(MDPI, 2022-09-09) Sun, Xun; Li, Ke-Xin; Figueiredo, Marxa L.; Lin, Chien-Chi; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyErratum for: Generation of the Chondroprotective Proteomes by Activating PI3K and TNFα Signaling. Sun X, Li KX, Figueiredo ML, Lin CC, Li BY, Yokota H. Cancers (Basel). 2022 Jun 21;14(13):3039. doi: 10.3390/cancers14133039. PMID: 35804814Item Lipopolysaccharides Improve Mesenchymal Stem Cell-Mediated Cardioprotection by MyD88 and stat(Mary Ann Liebert, 2019-04-25) Chu, Xiaona; Xu, Bing; Gao, Hongyu; Li, Bai-Yan; Liu, Yunlong; Reiter, Jill L.; Wang, Yue; Medical and Molecular Genetics, School of MedicineBone marrow-derived mesenchymal stem cells (MSCs) improve cardiac function after ischemia/reperfusion injury, in part, due to the release of cytoprotective paracrine factors. Toll-like receptor 4 (TLR4) is expressed in MSCs and regulates the expression of cytoprotective factors, cytokines, and chemokines. Lipopolysaccharide (LPS) stimulation of TLR4 activates two distinct signaling pathways that are either MyD88 dependent or MyD88 independent/TIR-domain-containing adapter-inducing interferon-β (TRIF) dependent. While it was reported previously that LPS treatment improved MSC-mediated cardioprotection, the mechanism underlying such improved effect remains unknown. To study the role of MyD88 signaling in MSC cardioprotective activity, wild type (WT) and MyD88-/- MSCs were treated with LPS (200 ng/mL) for 24 h. WT and MyD88-/- MSCs with or without LPS pretreatment were infused into the coronary circulation of isolated mouse hearts (Langendorff model) and then subjected to ischemia (25 min) and reperfusion (50 min). Saline served as a negative control. Both untreated and LPS-pretreated WT MSCs significantly improved postischemic recovery of myocardial function of isolated mouse hearts, as evidenced by improved left ventricular developed pressure and ventricular contractility assessment (ie, the rate of left ventricle pressure change over time, ± dp/dt). LPS-pretreated WT MSCs conferred better cardiac function recovery than untreated MSCs; however, such effect of LPS was abolished when using MyD88-/- MSCs. In addition, LPS stimulated stat3 activity in WT MSCs, but not MyD88-/- MSCs. stat3 small interfering RNA abolished the effect of LPS in improving the cardioprotection of WT MSCs. In conclusion, this study demonstrates that LPS improves MSC-mediated cardioprotection by MyD88-dependent activation of stat3.