- Browse by Subject
Browsing by Subject "MODIS"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Correlating Remote Sensing Data with the Abundance of Pupae of the Dengue Virus Mosquito Vector, Aedes aegypti, in Central Mexico(2014-05) Moreno-Madriñán, Max J.; Crosson, William L.; Eisen, Lars; Estes, Sue M.; Estes Jr, Maurice G.; Hayden, Mary; Hemmings, Sarah N.; Irwin, Dan E.; Lozano-Fuentes, Saul; Monaghan, Andrew J.; Quattrochi, Dale; Welsh-Rodriguez, Carlos M.; Zielinski-Gutierrez, EmilyUsing a geographic transect in Central Mexico, with an elevation/climate gradient, but uniformity in socio-economic conditions among study sites, this study evaluates the applicability of three widely-used remote sensing (RS) products to link weather conditions with the local abundance of the dengue virus mosquito vector, Aedes aegypti (Ae. aegypti). Field-derived entomological measures included estimates for the percentage of premises with the presence of Ae. aegypti pupae and the abundance of Ae. aegypti pupae per premises. Data on mosquito abundance from field surveys were matched with RS data and analyzed for correlation. Daily daytime and nighttime land surface temperature (LST) values were obtained from Moderate Resolution Imaging Spectroradiometer (MODIS)/Aqua cloud-free images within the four weeks preceding the field survey. Tropical Rainfall Measuring Mission (TRMM)-estimated rainfall accumulation was calculated for the four weeks preceding the field survey. Elevation was estimated through a digital elevation model (DEM). Strong correlations were found between mosquito abundance and RS-derived night LST, elevation and rainfall along the elevation/climate gradient. These findings show that RS data can be used to predict Ae. aegypti abundance, but further studies are needed to define the climatic and socio-economic conditions under which the correlations observed herein can be assumed to apply.Item Retrieval of aerosol optical depth from MODIS data at 500 m resolution compared with ground measurement in the state of Indiana(2015-05-05) Alhaj Mohamad, Fahed; Johnson, Daniel P.; Lulla, Vijay O.; Bein, Frederick L.Objective: "The purpose of this research is: Study the use of Moderate Resolution Imaging Spectroradiometer (MODIS) data in retrieving the aerosol optical depth (AOD) over Indiana State at high resolution of 500 meters. Examine the potential of using the resulted AOD data as an indicator of particulate air pollution by comparing the satellite derived AOD data with the ground measurements (provided from the continuous air monitors available over the study area). If an association should be found, AOD data would be used to map particulate matter (PM) concentration. Assess current and future ambient concentrations of air pollutants in the State of Indiana using the AOD."Item Spatio-Temporal Variability in a Turbid and Dynamic Tidal Estuarine Environment (Tasmania, Australia): An Assessment of MODIS Band 1 Reflectance(MDPI, 2017-10-15) Fischer, Andrew M.; Pang, Daniel; Kidd, Ian M.; Moreno-Madriñán, Max J.; Environmental Health Sciences, School of Public HealthPatterns of turbidity in estuarine environments are linked to hydrodynamic processes. However, the linkage between patterns and processes remains poorly resolved due to the scarcity of data needed to resolve fine scale highly dynamic processes in tidal estuaries. The application of remote sensing technology to monitor dynamic coastal areas such as estuaries offers important advantages in this regard, by providing synoptic maps of larger, constantly changing regions over consistent periods. In situ turbidity measurements were correlated against the Moderate Resolution Imaging Spectrometer Terra sensor 250 m surface reflectance product, in order to assess this product for examining the complex estuarine waters of the Tamar estuary (Australia). Satellite images were averaged to examine spatial, seasonal and annual patterns of turbidity. Relationships between in situ measurements of turbidity and reflectance is positively correlated and improves with increased tidal height, a decreased overpass-in situ gap, and one day after a rainfall event. Spatial and seasonal patterns that appear in seasonal and annual MODIS averages, highlighting the usefulness of satellite imagery for resource managers to manage sedimentation issues in a degraded estuary.Item Spatio-Temporal Variability in a Turbid and Dynamic Tidal Estuarine Environment (Tasmania, Australia): An Assessment of MODIS Band 1 Reflectance(MDPI, 2017-10-25) Fischer, Andrew M.; Pang, Daniel; Kidd, Ian M.; Moreno-Madrinan, Max J.; Environmental Health Sciences, School of Public HealthPatterns of turbidity in estuarine environments are linked to hydrodynamic processes. However, the linkage between patterns and processes remains poorly resolved due to the scarcity of data needed to resolve fine scale highly dynamic processes in tidal estuaries. The application of remote sensing technology to monitor dynamic coastal areas such as estuaries offers important advantages in this regard, by providing synoptic maps of larger, constantly changing regions over consistent periods. In situ turbidity measurements were correlated against the Moderate Resolution Imaging Spectrometer Terra sensor 250 m surface reflectance product, in order to assess this product for examining the complex estuarine waters of the Tamar estuary (Australia). Satellite images were averaged to examine spatial, seasonal and annual patterns of turbidity. Relationships between in situ measurements of turbidity and reflectance is positively correlated and improves with increased tidal height, a decreased overpass-in situ gap, and one day after a rainfall event. Spatial and seasonal patterns that appear in seasonal and annual MODIS averages, highlighting the usefulness of satellite imagery for resource managers to manage sedimentation issues in a degraded estuary.