- Browse by Subject
Browsing by Subject "MEK"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item The Effects of a Novel MEK Inhibitor PD184161 on MEK–ERK Signaling and Growth in Human Liver Cancer(Elsevier, 2006-01) Klein, Patrick J.; Schmidt, C. Max; Wiesenauer, Chad A.; Choi, Jennifer N.; Gage, Earl A.; Yip-Schneider, Michele T.; Wiebke, Eric A.; Wang, Yufang; Omer, Charles; Sebolt-Leopold, Judith S.; Biochemistry and Molecular Biology, School of MedicineThe MEK-ERK growth signaling pathway is important in human hepatocellular carcinoma (HCC). To evaluate the targeting of this pathway in HCC, we characterized a novel, orally-active MEK inhibitor, PD184161, using human HCC cells (HepG2, Hep3B, PLC, and SKHep) and in vivo human tumor xenografts. PD184161 inhibited MEK activity (IC50 = 10-100 nM) in a time- and concentrationdependent manner more effectively than PD098059 or U0126. PD184161 inhibited cell proliferation and induced apoptosis at concentrations of ≥ 1.0 µM in a time- and concentration-dependent manner. In vivo, tumor xenograft P-ERK levels were significantly reduced 3 to 12 hours after an oral dose of PD184161 (P< .05). Contrarily, tumor xenograft P-ERK levels following long-term (24 days) daily dosing of PD184161 were refractory to this signaling effect. PD184161 significantly suppressed tumor engraftment and initial growth (P<.0001); however, established tumors were not significantly affected. In conclusion, PD184161 has antitumor effects in HCC in vitro and in vivo that appear to correlate with suppression of MEK activity. These studies demonstrate that PD184161 is unable to suppress MEK activity in HCC xenografts in the long term. Thus, we speculate that the degree of success of MEKtargeted treatment in HCC and other cancers may, in part, depend on the discovery of mechanisms governing MEK inhibitor signaling resistance.Item Inhibition of MEK signaling prevents SARS-CoV2-induced lung damage and improves the survival of infected mice(Wiley, 2022-08-28) Xie, Jingwu; Klemsz, Michael J.; Kacena, Melissa A.; Sandusky, George; Zhang, Xiaoli; Kaplan, Mark H.; Pathology and Laboratory Medicine, School of MedicineCoronavirus disease 2019 (COVID-19) is the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 500 million confirmed cases of COVID-19 have been recorded, with 6 million deaths. Thus, reducing the COVID-19-related medical burden is an unmet need. Despite a vaccine that is successful in preventing COVID-19-caused death, effective medication to relieve COVID-19-associated symptoms and alleviate disease progression is still in high demand. In particular, one in three COVID-19 patients have signs of long COVID syndrome and are termed long haulers. At present, there are no effective ways to treat long haulers. In this study, we determine the effectiveness of inhibiting mitogen-activated protein kinase (MEK) signaling in preventing SARS-CoV-2-induced lung damage in mice. We showed that phosphorylation of extracellular signal-regulated kinase (ERK), a marker for MEK activation, is high in SARS-CoV-2-infected lung tissues of mice and humans. We show that selumetinib, a specific inhibitor of the upstream MEK kinases, reduces cell proliferation, reduces lung damage following SARS-CoV-2 infection, and prolongs the survival of the infected mice. Selumetinib has been approved by the US Food and Drug Administration (FDA) to treat cancer. Further analysis indicates that amphiregulin (AREG), an essential upstream molecule, was upregulated following SARS-CoV-2 infection. Our data suggest that MEK signaling activation represents a target for therapeutic intervention strategies against SARS-CoV-2-induced lung damage and that selumetinib may be repurposed to treat COVID-19.Item A novel PI3K inhibitor iMDK suppresses non-small cell lung Cancer cooperatively with A MEK inhibitor(Elsevier, 2015-07-15) Ishida, Naomasa; Fukazawa, Takuya; Maeda, Yutaka; Yamatsuji, Tomoki; Takaoka, Munenori; Haisa, Minoru; Yokota, Etsuko; Shigemitsu, Kaori; Morita, Ichiro; Kato, Katsuya; Matsumoto, Kenichi; Shimo, Tsuyoshi; Okui, Tatsuo; Bao, Xiao-Hong; Hao, Huifang; Grant, Shawn N.; Takigawa, Nagio; Whitsett, Jeffrey A.; Naomoto, Yoshio; Department of Medicine, Division of Hematology and Oncology, IU School of MedicineThe PI3K–AKT pathway is expected to be a therapeutic target for non-small cell lung cancer (NSCLC) treatment. We previously reported that a novel PI3K inhibitor iMDK suppressed NSCLC cells in vitro and in vivo without harming normal cells and mice. Unexpectedly, iMDK activated the MAPK pathway, including ERK, in the NSCLC cells. Since iMDK did not eradicate such NSCLC cells completely, it is possible that the activated MAPK pathway confers resistance to the NSCLC cells against cell death induced by iMDK. In the present study, we assessed whether suppressing of iMDK-mediated activation of the MAPK pathway would enhance anti-tumorigenic activity of iMDK. PD0325901, a MAPK inhibitor, suppressed the MAPK pathway induced by iMDK and cooperatively inhibited cell viability and colony formation of NSCLC cells by inducing apoptosis in vitro. HUVEC tube formation, representing angiogenic processes in vitro, was also cooperatively inhibited by the combinatorial treatment of iMDK and PD0325901. The combinatorial treatment of iMDK with PD0325901 cooperatively suppressed tumor growth and tumor-associated angiogenesis in a lung cancer xenograft model in vivo. Here, we demonstrate a novel treatment strategy using iMDK and PD0325901 to eradicate NSCLC.Item Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of neurofibromatosis type 1.(Wiley, 2015-10) Jousma, Edwin; Rizvi, Tilat A.; Wu, Jianqiang; Janhofer, David; Dombi, Eva; Dunn, Richard S.; Kim, Mi-Ok; Masters, Andrea R.; Jones, David R.; Cripe, Timothy P.; Ratner, Nancy; Department of Medicine, IU School of MedicineBackground: Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes affected individuals to formation of benign neurofibromas, peripheral nerve tumors that can be associated with significant morbidity. Loss of the NF1 Ras-GAP protein causes increased Ras-GTP, and we previously found that inhibiting MEK signaling downstream of Ras can shrink established neurofibromas in a genetically engineered murine model. Procedures: We studied effects of MEK inhibition using 1.5 mg/kg/day PD-0325901 prior to neurofibroma onset in the Nf1 flox/flox;Dhh-Cre mouse model. We also treated mice with established tumors at 0.5 and 1.5 mg/kg/day dosees of PD-0325901. We monitored tumor volumes using MRI and volumetric measurements, and measured pharmacokinetic and pharmacodynamic endpoints. Results: Early administration significantly delayed neurofibroma development as compared to vehicle controls. When treatment was discontinued neurofibromas grew, but no rebound effect was observed and neurofibromas remained significantly smaller than controls. Low dose treatment of mice with PD-0325901 resulted in neurofibroma shrinkage equivalent to that observed at higher doses. Tumor cell proliferation decreased, although less than at higher doses with drug. Tumor blood vessels per area correlated with tumor shrinkage. Conclusions: Neurofibroma development was not prevented by MEK inhibition, beginning at 1 month of age, but tumor size was controlled by early treatment. Moreover, treatment with PD-0325901 at very low doses may shrink neurofibromas while minimizing toxicity. These studies highlight how genetically engineered mouse models can guide clinical trial design.Item Simultaneous Inhibition of MEK and Hh Signaling Reduces Pancreatic Cancer Metastasis(MDPI, 2018-10-26) Gu, Dongsheng; Lin, Hai; Zhang, Xiaoli; Fan, Qipeng; Chen, Shaoxiong; Shahda, Safi; Liu, Yunlong; Sun, Jie; Xie, Jingwu; Pediatrics, School of MedicinePancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is one of the most lethal cancer types, with an estimated 44,330 death in 2018 in the US alone. While targeted therapies and immune checkpoint inhibitors have significantly improved treatment options for patients with lung cancer and renal cell carcinomas, little progress has been made in pancreatic cancer, with a dismal 5-year survival rate currently at ~8%. Upon diagnosis, the majority of pancreatic cancer cases (~80%) are already metastatic. Thus, identifying ways to reduce pancreatic cancer metastasis is an unmet medical need. Furthermore, pancreatic cancer is notorious resistant to chemotherapy. While Kirsten RAt Sarcoma virus oncogene (K-RAS) mutation is the major driver for pancreatic cancer, specific inhibition of RAS signaling has been very challenging, and combination therapy is thought to be promising. In this study, we report that combination of hedgehog (Hh) and Mitogen-activated Protein/Extracellular Signal-regulated Kinase Kinase (MEK) signaling inhibitors reduces pancreatic cancer metastasis in mouse models. In mouse models of pancreatic cancer metastasis using human pancreatic cancer cells, we found that Hh target gene Gli1 is up-regulated during pancreatic cancer metastasis. Specific inhibition of smoothened signaling significantly altered the gene expression profile of the tumor microenvironment but had no significant effects on cancer metastasis. By combining Hh signaling inhibitor BMS833923 with RAS downstream MEK signaling inhibitor AZD6244, we observed reduced number of metastatic nodules in several mouse models for pancreatic cancer metastasis. These two inhibitors also decreased cell proliferation significantly and reduced CD45⁺ cells (particularly Ly6G⁺CD11b⁺ cells). We demonstrated that depleting Ly6G⁺ CD11b⁺ cells is sufficient to reduce cancer cell proliferation and the number of metastatic nodules. In vitro, Ly6G⁺ CD11b⁺ cells can stimulate cancer cell proliferation, and this effect is sensitive to MEK and Hh inhibition. Our studies may help design novel therapeutic strategies to mitigate pancreatic cancer metastasis.