- Browse by Subject
Browsing by Subject "MAPK"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Chronic impairment of ERK signaling in glutamatergic neurons of the forebrain does not affect spatial memory retention and LTP in the same manner as acute blockade of the ERK pathway(Wiley, 2017-12) Vithayathil, Joseph; Pucilowska, Joanna; Friel, David; Landreth, Gary E.; Anatomy and Cell Biology, IU School of MedicineThe ERK/MAPK signaling pathway has been extensively studied in the context of learning and memory. Defects in this pathway underlie genetic diseases associated with intellectual disability, including impaired learning and memory. Numerous studies have investigated the impact of acute ERK/MAPK inhibition on long-term potentiation and spatial memory. However, genetic knockouts of the ERKs have not been utilized to determine whether developmental perturbations of ERK/MAPK signaling affect LTP and memory formation in postnatal life. In this study, two different ERK2 conditional knockout mice were generated that restrict loss of ERK2 to excitatory neurons in the forebrain, but at different time-points (embryonically and post-natally). We found that embryonic loss of ERK2 had minimal effect on spatial memory retention and novel object recognition, while loss of ERK2 post-natally had more pronounced effects in these behaviors. Loss of ERK2 in both models showed intact LTP compared to control animals, while loss of both ERK1 and ERK2 impaired late phase LTP. These findings indicate that ERK2 is not necessary for LTP and spatial memory retention and provide new insights into the functional deficits associated with the chronic impairment of ERK signaling.Item Effects of biomechanical forces on signaling in the cortical collecting duct (CCD)(American Physiological Society (APS), 2014-07-15) Carrisoza-Gaytan, Rolando; Liu, Yu; Flores, Daniel; Else, Cindy; Lee, Heon Goo; Rhodes, George; Sandoval, Ruben M.; Kleyman, Thomas R.; Lee, Francis Young-In; Molitoris, Bruce; Satlin, Lisa M.; Rohatgi, Rajeev; Department of Medicine, IU School of MedicineAn increase in tubular fluid flow rate (TFF) stimulates Na reabsorption and K secretion in the cortical collecting duct (CCD) and subjects cells therein to biomechanical forces including fluid shear stress (FSS) and circumferential stretch (CS). Intracellular MAPK and extracellular autocrine/paracrine PGE2 signaling regulate cation transport in the CCD and, at least in other systems, are affected by biomechanical forces. We hypothesized that FSS and CS differentially affect MAPK signaling and PGE2 release to modulate cation transport in the CCD. To validate that CS is a physiological force in vivo, we applied the intravital microscopic approach to rodent kidneys in vivo to show that saline or furosemide injection led to a 46.5 ± 2.0 or 170 ± 32% increase, respectively, in distal tubular diameter. Next, murine CCD (mpkCCD) cells were grown on glass or silicone coated with collagen type IV and subjected to 0 or 0.4 dyne/cm2 of FSS or 10% CS, respectively, forces chosen based on prior biomechanical modeling of ex vivo microperfused CCDs. Cells exposed to FSS expressed an approximately twofold greater abundance of phospho(p)-ERK and p-p38 vs. static cells, while CS did not alter p-p38 and p-ERK expression compared with unstretched controls. FSS induced whereas CS reduced PGE2 release by ∼40%. In conclusion, FSS and CS differentially affect ERK and p38 activation and PGE2 release in a cell culture model of the CD. We speculate that TFF differentially regulates biomechanical signaling and, in turn, cation transport in the CCD.Item Elevated Expression of MAPK Phosphatase 3 in Breast Tumors—A Mechanism of Tamoxifen Resistance(American Association for Cancer Research, 2006-06-01) Cui, Yukun; Parra, Irma; Zhang, Mao; Hilsenbeck, Susan G.; Tsimelzon, Anna; Furukawa, Toru; Horii, Akira; Zhang, Zhong-Yin; Nicholson, Robert I.; Fuqua, Suzanne A. W.; Department of Biochemistry & Molecular Biology, IU School of MedicineAntiestrogen resistance is a major clinical problem in the treatment of breast cancer. Altered growth factor signaling with estrogen receptor (ER) α has been shown to be associated with the development of resistance. Gene expression profiling was utilized to identify MAPK phosphatase 3 (MKP3) whose expression was correlated with response to the antiestrogen tamoxifen in both patients and in vitro derived cell line models. Overexpression of MKP3 rendered ERα-positive breast cancer cells resistant to the growth inhibitory effects of tamoxifen, and enhanced tamoxifen agonist activity in endometrial cells. MKP3 overexpression was associated with lower levels of activated ERK1,2 phosphorylation in the presence of estrogen, but that estrogen deprivation and tamoxifen treatment decreased MKP3 phosphatase activity, leading to an up-regulation of pERK1,2 MAPK, phosphoserine 118 of ERα, and cyclin D1. The MEK inhibitor PD98059 blocked tamoxifen-resistant growth. Accumulation of reactive oxygen species was observed with tamoxifen treatment of MKP3 overexpressing cells, and antioxidant treatment increased MKP3 phosphatase activity, thereby blocking resistance. Furthermore, PD98059 increased the levels of phospho-JNK in tamoxifen-treated MKP3 overexpressing cells, suggesting an interaction between MKP3 levels, activation of ERK1,2 MAPK, and JNK signaling in human breast cancer cells. MKP3 represents a novel mechanism of resistance which may be a potential biomarker for the use of ERK1,2 and/or JNK inhibitors in combination with tamoxifen treatment.Item Targeting KRAS for the potential treatment of pancreatic ductal adenocarcinoma: Recent advancements provide hope (Review)(Spandidos, 2023-10-04) Zhang, Joshua; Darman , Lily; Hassan , Md Sazzad; Holzen , Urs Von; Awasthi, Niranjan; Medicine, School of MedicineKirsten rat sarcoma viral oncogene homolog (KRAS) is one of the most frequently mutated oncogenes in solid tumors. More than 90% of pancreatic ductal adenocarcinoma (PDAC) are driven by mutations in the KRAS gene, suggesting the importance of targeting this oncogene in PDAC. Initial efforts to target KRAS have been unsuccessful due to its small size, high affinity for guanosine triphosphate/guanosine diphosphate, and lack of distinct drug‑binding pockets. Therefore, much of the focus has been directed at inhibiting the activation of major signaling pathways downstream of KRAS, most notably the PI3K/AKT and RAF/MAPK pathways, using tyrosine kinase inhibitors and monoclonal antibodies. While preclinical studies showed promising results, clinical data using the inhibitors alone and in combination with other standard therapies have shown limited practicality, largely due to the lack of efficacy and dose‑limiting toxicities. Recent therapeutic approaches for KRAS‑driven tumors focus on mutation‑specific drugs such as selective KRASG12C inhibitors and son of sevenless 1 pan‑KRAS inhibitors. While KRASG12C inhibitors showed great promise against patients with non‑small cell lung cancer (NSCLC) harboring KRASG12C mutations, they were not efficacious in PDAC largely because the major KRAS mutant isoforms in PDAC are G12D, G12V, and G12R. As a result, KRASG12D and pan‑KRAS inhibitors are currently under investigation as potential therapeutic options for PDAC. The present review summarized the importance of KRAS oncogenic signaling, challenges in its targeting, and preclinical and clinical targeted agents including recent direct KRAS inhibitors for blocking KRAS signaling in PDAC.