- Browse by Subject
Browsing by Subject "Lysosome"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Does Data-Independent Acquisition Data Contain Hidden Gems? A Case Study Related to Alzheimer's Disease(American Chemical Society, 2022) Hubbard, Evan E.; Heil, Lilian R.; Merrihew, Gennifer E.; Chhatwal, Jasmeer P.; Farlow, Martin R.; McLean, Catriona A.; Ghetti, Bernardino; Newell, Kathy L.; Frosch, Matthew P.; Bateman, Randall J.; Larson, Eric B.; Keene, C. Dirk; Perrin, Richard J.; Montine, Thomas J.; MacCoss, Michael J.; Julian, Ryan R.; Pathology and Laboratory Medicine, School of MedicineOne of the potential benefits of using data-independent acquisition (DIA) proteomics protocols is that information not originally targeted by the study may be present and discovered by subsequent analysis. Herein we reanalyzed DIA data originally recorded for global proteomic analysis to look for isomerized peptides, which occur as a result of spontaneous chemical modifications to long-lived proteins. Examination of a large set of human brain samples revealed a striking relationship between Alzheimer’s disease (AD) status and isomerization of aspartic acid in a peptide from tau. Relative to controls, a surprising increase in isomer abundance was found in both autosomal dominant and sporadic AD samples. To explore potential mechanisms that might account for these observations, quantitative analysis of proteins related to isomerization repair and autophagy was performed. Differences consistent with reduced autophagic flux in AD-related samples relative to controls were found for numerous proteins, including most notably p62, a recognized indicator of autophagic inhibition. These results suggest, but do not conclusively demonstrate, that lower autophagic flux may be strongly associated with loss of function in AD brains. This study illustrates that DIA data may contain unforeseen results of interest, and may be particularly useful for pilot studies investigating new research directions. In this case, a promising target for future investigations into the therapy and prevention of AD has been identified.Item Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply(Taylor & Francis, 2018) Zhang, Hao; Yan, Shengmin; Khambu, Bilon; Ma, Fengguang; Li, Yong; Chen, Xiaoyun; Puertollano, Rosa; Li, Yu; Chalasani, Naga; Yin, Xiao-Ming; Martina, Jose A.; Pathology & Laboratory Medicine, IU School of MedicineNormal metabolism requires a controlled balance between anabolism and catabolism. It is not completely known how this balance can be retained when the level of nutrient supply changes in the long term. We found that in murine liver anabolism, as represented by the phosphorylation of RPS6KB (ribosomal protein S6 kinase), was soon elevated while catabolism, as represented by TFEB (transcription factor EB)-directed gene transcription and lysosomal activities, was downregulated after the administration of a high-fat diet (HFD). Surprisingly, neither the alteration in RPS6KB phosphorylation nor that in TFEB functions was static over the long course of HFD feeding. Instead, the 2 signals exhibited dynamic alterations in opposite directions, which could be explained by the dependence of MTORC1 (MTOR complex 1) activation on TFEB-supported lysosome function and the feedback suppression of TFEB by MTORC1. Disruption of the dynamics by enforced expression of TFEB in HFD-fed mice at the peaks of MTORC1 activation restored lysosome function. Consistently, interference of MTORC1 activation with rapamycin or with a constitutively activated RRAGA mutant at the peak or nadir of MTORC1 oscillation enhanced or reduced the lysosome function, respectively. These treatments also improved or exacerbated hepatic steatosis and liver injury, respectively. Finally, there was a significant inverse correlation between TFEB activation and steatosis severity in the livers of patients with non-alcohol fatty liver diseases, supporting the clinical relevance of TFEB-regulated events. Thus, maintaining catabolic function through feedback mechanisms during enhanced anabolism, which is caused by nutrient oversupply, is important for reducing liver pathology.Item Endothelial Rab7 GTPase mediates tumor growth and metastasis in lysosomal acid lipase-deficient mice(American Society for Biochemistry and Molecular Biology, 2017-11-24) Zhao, Ting; Ding, Xinchun; Yan, Cong; Du, Hong; Pathology and Laboratory Medicine, School of MedicineTumors depend on their microenvironment for sustained growth, invasion, and metastasis. In this environment, endothelial cells (ECs) are an important stromal cell type interacting with malignant cells to facilitate tumor angiogenesis and cancer cell extravasation. Of note, lysosomal acid lipase (LAL) deficiency facilitates melanoma growth and metastasis. ECs from LAL-deficient (lal-/-) mice possess enhanced proliferation, migration, and permeability of inflammatory cells by activating the mammalian target of rapamycin (mTOR) pathway. Here we report that lal-/- ECs facilitated in vivo tumor angiogenesis, growth, and metastasis, largely by stimulating tumor cell proliferation, migration, adhesion, and transendothelial migration via increased expression of IL-6 and monocyte chemoattractant protein 1 (MCP-1). This prompted us to look for lysosomal proteins that are involved in lal-/- EC dysfunctions. We found that lal-/- ECs displayed increased expression of Rab7, a late endosome/lysosome-associated small GTPase. Moreover, Rab7 and mTOR were co-increased and co-localized to lysosomes and physically interacted in lal-/- ECs. Rab7 inhibition reversed lal-/- EC dysfunctions, including decreasing their enhanced migration and permeability of tumor-stimulatory myeloid cells, and suppressed EC-mediated stimulation of in vitro tumor cell transmigration, proliferation, and migration and in vivo tumor growth and metastasis. Finally, Rab7 inhibition reduced overproduction of reactive oxygen species and increased IL-6 and MCP-1 secretion in lal-/- ECs. Our results indicate that metabolic reprogramming resulting from LAL deficiency enhances the ability of ECs to stimulate tumor cell proliferation and metastasis through stimulation of lysosome-anchored Rab7 activity.Item Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores(Rockefeller University Press, 1998) Tuma, M. Carolina; Zill, Andrew; Le Bot, Nathalie; Vernos, Isabelle; Gelfand, Vladimir; Anatomy, Cell Biology and Physiology, School of MedicineMelanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720-3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles.Item Homeostatic role of acid sphingomyelinase in mtor signaling and autophagy(2017-04) Justice, Matthew Jose; Petrache, Irina; Roach, Peter J.; Dong, X. Charlie; Yin, Xiao-MingKey regulatory decisions of protein synthesis and autophagy are controlled by the lysosomal nutrient sensing complex (LYNUS). To engage protein synthesis signaling, LYNUS requires cellular availability of amino acids, adenosine triphosphate (ATP), growth factors, and docking at the lysosomal membrane. The molecular determinants of LYNUS signaling and docking are not completely elucidated and may involve regulators of the lipid membrane structure and function of the lysosome. Since ceramides are both bioactive second messengers and determinants of lipid membrane stiffness, we investigated the role of the ceramide-producing lysosomal acid sphingomyelinase (ASM) in the homeostatic function of mammalian target of rapamycin (mTOR) signaling and autophagy. Using ASM inhibition with either imipramine or siRNA against SMPD1, in primary human lung cells or Smpd1+/- mice, we demonstrated that ASM is an endogenous inhibitor of autophagy. ASM was necessary for physiological mTOR signaling and maintenance of sphingosine levels. Whereas overstimulation of ASM has been shown to trigger autophagy with impaired flux, inhibition of ASM activity during homeostatic, non-stressed conditions triggered autophagy with degradative potential, associated with enhanced transcription factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis genes, translocation to the nucleus and decreased sphingosine levels. These findings suggest LYNUS signaling and autophagy are partially regulated by ASM.Item Inhibition of acid sphingomyelinase disrupts LYNUS signaling and triggers autophagy(American Society for Biochemistry and Molecular Biology, 2018-04) Justice, Matthew J.; Bronova, Irina; Schweitzer, Kelly S.; Poirier, Christophe; Blum, Janice S.; Berdyshev, Evgeny V.; Petrache, Irina; Biochemistry and Molecular Biology, School of MedicineActivation of the lysosomal ceramide-producing enzyme, acid sphingomyelinase (ASM), by various stresses is centrally involved in cell death and has been implicated in autophagy. We set out to investigate the role of the baseline ASM activity in maintaining physiological functions of lysosomes, focusing on the lysosomal nutrient-sensing complex (LYNUS), a lysosomal membrane-anchored multiprotein complex that includes mammalian target of rapamycin (mTOR) and transcription factor EB (TFEB). ASM inhibition with imipramine or sphingomyelin phosphodiesterase 1 (SMPD1) siRNA in human lung cells, or by transgenic Smpd1+/- haploinsufficiency of mouse lungs, markedly reduced mTOR- and P70-S6 kinase (Thr 389)-phosphorylation and modified TFEB in a pattern consistent with its activation. Inhibition of baseline ASM activity significantly increased autophagy with preserved degradative potential. Pulse labeling of sphingolipid metabolites revealed that ASM inhibition markedly decreased sphingosine (Sph) and Sph-1-phosphate (S1P) levels at the level of ceramide hydrolysis. These findings suggest that ASM functions to maintain physiological mTOR signaling and inhibit autophagy and implicate Sph and/or S1P in the control of lysosomal function.Item Inhibition of TFEB activation promotes Coxiella burnetii growth(2021-05) Das Ghatak, Piya; Gilk, Stacey D.; Bauer, Margaret E.; Robinson, Christopher M.Coxiella burnetii is the etiologic agent of Q fever, a zoonotic disease characterized by flu-like sickness in acute cases; endocarditis may occur and turn deadly if not treated correctly in chronic patients. Coxiella, an obligate intracellular bacterium, requires establishment of a replicative niche in the host cell. After being phagocytosed by the eukaryotic cell, the bacterium resides in a tight-fitting nascent phagosome which matures through the host canonical endocytic pathway, acquiring endosomal/lysosomal markers as well as acidic pH. Initial acidification of the Coxiella containing vacuole (CCV) is central to the bacterium’s pathogenesis because translocation of bacterial effector proteins into the host cell by the type 4B secretion system (T4BSS) initiates only after it senses the acidic environment. The effector proteins are required for subverting different host cell functions in favor of Coxiella growth, CCV maturation and are crucial for bacterial virulence. Contrary to the belief that since CCV matures through the host endocytic pathway, CCV is as acidic as lysosome, we found that CCV is significantly less acidic (pH~5.2) than lysosomes (pH~4.8) and inducing further CCV acidification causes Coxiella lysis. Furthermore, increasing lysosomal biogenesis in the host cell is detrimental for Coxiella growth. So, we hypothesized that Coxiella blocks lysosomal biogenesis in host cells to maintain the CCV pH just optimal for its growth. Lysosomal biogenesis is regulated by the master transcription factor EB (TFEB). Its ability to act as a transcription factor depends on its subcellular localization, which relies on its phosphorylation state. TFEB, when phosphorylated is cytosolic and inactive, whereas dephosphorylated TFEB translocates to the nucleus and is active, binding to promoter regions of lysosomal genes of the CLEAR network, thus controlling lysosome biogenesis. Therefore, we hypothesized that Coxiella blocks TFEB translocation to the nucleus, thus inhibiting lysosome biogenesis. We determined that Coxiella grows significantly better in TFEB-KO cells than they do in parentals. Also, using a torin-induced TFEB translocation model, we observed remarkably decreased TFEB activation in the Coxiella infected cells as was evident by less TFEB translocation to nucleus. Overall, data obtained from this work suggest that Coxiella inhibits lysosome biogenesis by blocking TFEB nuclear translocation.Item Pancreatic beta cell autophagy is impaired in type 1 diabetes(Springer, 2021-04) Muralidharan, Charanya; Conteh, Abass M.; Marasco, Michelle R.; Crowder, Justin J.; Kuipers, Jeroen; de Boer, Pascal; Linnemann, Amelia K.; Biochemistry and Molecular Biology, School of MedicineAims/hypothesis: Pancreatic beta cells are subjected to exogenous damaging factors such as proinflammatory cytokines or excess glucose that can cause accumulation of damage-inducing reactive oxygen species during the pathogenesis of diabetes. We and others have shown that beta cell autophagy can reduce reactive oxygen species to protect against apoptosis. While impaired islet autophagy has been demonstrated in human type 2 diabetes, it is unknown if islet autophagy is perturbed in the pathogenesis of type 1 diabetes. We hypothesised that beta cell autophagy is dysfunctional in type 1 diabetes, and that there is a progressive loss during early diabetes development. Methods: Pancreases were collected from chloroquine-injected and non-injected non-obese diabetes-resistant (NOR) and non-obese diabetic (NOD) mice. Age- and BMI-matched pancreas tissue sections from human organ donors (N = 34) were obtained from the Network for Pancreatic Organ Donors with Diabetes (nPOD). Tissue sections were stained with antibodies against proinsulin or insulin (beta cell markers), microtubule-associated protein 1 light chain 3 A/B (LC3A/B; autophagosome marker), lysosomal-associated membrane protein 1 (LAMP1; lysosome marker) and p62 (autophagy adaptor). Images collected on a scanning laser confocal microscope were analysed with CellProfiler and ImageJ. Secondary lysosomes and telolysosomes were assessed in electron micrographs of human pancreatic tissue sections (n = 12), and energy dispersive x-ray analysis was performed to assess distribution of elements (n = 5). Results: We observed increased autophagosome numbers in islets of diabetic NOD mice (p = 0.008) and increased p62 in islets of both non-diabetic and diabetic NOD mice (p < 0.001) vs NOR mice. There was also a reduction in LC3-LAMP1 colocalisation in islets of diabetic NOD mice compared with both non-diabetic NOD (p < 0.001) and NOR mice (p < 0.001). Chloroquine elicited accumulation of autophagosomes in the islets of NOR (p = 0.003) and non-diabetic NOD mice (p < 0.001), but not in islets of diabetic NOD mice; and stimulated accumulation of p62 in NOR (p < 0.001), but not in NOD mice. We observed reduced LC3-LAMP1 colocalisation (p < 0.001) in residual beta cells of human donors with type 1 diabetes vs non-diabetic participants. We also observed reduced colocalisation of proinsulin with LAMP1 in donors with type 1 diabetes (p < 0.001). Electron microscopy also revealed accumulation of telolysosomes with nitrogen-dense rings in beta cells of autoantibody-positive donors (p = 0.002). Conclusions/interpretation: We provide evidence of islet macroautophagy/crinophagy impairment in human type 1 diabetes. We also document accumulation of telolysosomes with peripheral nitrogen in beta cells of autoantibody-positive donors, demonstrating altered lysosome content that may be associated with lysosome dysfunction before clinical hyperglycaemia. Similar macroautophagy impairments are present in the NOD mouse model of type 1 diabetes.Item PTP4A2 promotes lysophagy by dephosphorylation of VCP/p97 at Tyr805(Taylor & Francis, 2023) Bai, Yunpeng; Yu, Guimei; Zhou, Hong-Ming; Amarasinghe, Ovini; Zhou, Yuan; Zhu, Peipei; Li, Qinglin; Zhang, Lujuan; Meke, Frederick Nguele; Miao, Yiming; Chapman, Eli; Tao, W. Andy; Zhang, Zhong-Yin; Dermatology, School of MedicineOverexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy. Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.Item β-Cell autophagy in the pathogenesis of type 1 diabetes(American Physiological Society, 2021-09-01) Muralidharan, Charanya; Linnemann, Amelia K.; Biochemistry and Molecular Biology, School of MedicineType 1 diabetes is an insulin-dependent, autoimmune disease where the pancreatic β cells are destroyed resulting in hyperglycemia. This multifactorial disease involves multiple environmental and genetic factors, and has no clear etiology. Accumulating evidence suggests that early signaling defects within the β cells may promote a change in the local immune milieu leading to autoimmunity. Therefore, many studies have been focused on intrinsic β-cell mechanisms that aid in the restoration of cellular homeostasis under environmental conditions that cause dysfunction. One of these intrinsic mechanisms to promote homeostasis is autophagy, defects which are clearly linked with β-cell dysfunction in the context of type 2 diabetes. Recent studies have now also pointed towards β-cell autophagy defects in the context of type 1 diabetes. In this perspectives review, we will discuss the evidence supporting a role for β-cell autophagy in the pathogenesis of type 1 diabetes, including a potential role for unconventional secretion of autophagosomes/lysosomes in the changing dialogue between the β cell and immune cells.