- Browse by Subject
Browsing by Subject "Lysine acetylation"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item DNA Polymerase Delta Exhibits Altered Catalytic Properties on Lysine Acetylation(MDPI, 2023-03-23) Njeri, Catherine; Pepenella, Sharon; Battapadi, Tripthi; Bambara, Robert A.; Balakrishnan, Lata; Biology, School of ScienceDNA polymerase delta is the primary polymerase that is involved in undamaged nuclear lagging strand DNA replication. Our mass-spectroscopic analysis has revealed that the human DNA polymerase δ is acetylated on subunits p125, p68, and p12. Using substrates that simulate Okazaki fragment intermediates, we studied alterations in the catalytic properties of acetylated polymerase and compared it to the unmodified form. The current data show that the acetylated form of human pol δ displays a higher polymerization activity compared to the unmodified form of the enzyme. Additionally, acetylation enhances the ability of the polymerase to resolve complex structures such as G-quadruplexes and other secondary structures that might be present on the template strand. More importantly, the ability of pol δ to displace a downstream DNA fragment is enhanced upon acetylation. Our current results suggest that acetylation has a profound effect on the activity of pol δ and supports the hypothesis that acetylation may promote higher-fidelity DNA replication.Item Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability(Springer, 2021) Ononye, Onyekachi E.; Sausen, Christopher W.; Bochman, Matthew L.; Balakrishnan, Lata; Biology, School of SciencePIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.Item Garcinol Inhibits GCN5-Mediated Lysine Acetyltransferase Activity and Prevents Replication of the Parasite Toxoplasma gondii.(ASM, 2016-04) Jeffers, Victoria; Gao, Hongyu; Checkley, Lisa A.; Liu, Yunlong; Ferdig, Michael T.; Sullivan, William J., Jr.; Department of Pharmacology and Toxicology, IU School of MedicineLysine acetylation is a critical posttranslational modification that influences protein activity, stability, and binding properties. The acetylation of histone proteins in particular is a well-characterized feature of gene expression regulation. In the protozoan parasite Toxoplasma gondii, a number of lysine acetyltransferases (KATs) contribute to gene expression and are essential for parasite viability. The natural product garcinol was recently reported to inhibit enzymatic activities of GCN5 and p300 family KATs in other species. Here we show that garcinol inhibits TgGCN5b, the only nuclear GCN5 family KAT known to be required for Toxoplasma tachyzoite replication. Treatment of tachyzoites with garcinol led to a reduction of global lysine acetylation, particularly on histone H3 and TgGCN5b itself. We also performed transcriptome sequencing (RNA-seq), which revealed increasing aberrant gene expression coincident with increasing concentrations of garcinol. The majority of the genes that were most significantly affected by garcinol were also associated with TgGCN5b in a previously reported chromatin immunoprecipitation assay with microarray technology (ChIP-chip) analysis. The dysregulated gene expression induced by garcinol significantly inhibits Toxoplasma tachyzoite replication, and the concentrations used exhibit no overt toxicity on human host cells. Garcinol also inhibits Plasmodium falciparum asexual replication with a 50% inhibitory concentration (IC50) similar to that for Toxoplasma. Together, these data support that pharmacological inhibition of TgGCN5b leads to a catastrophic failure in gene expression control that prevents parasite replication.Item Lysine acetylation regulates the activity of nuclear Pif1(Elsevier, 2020) Ononye, Onyekachi E.; Sausen, Christopher W.; Balakrishnan, Lata; Bochman, Matthew L.; Biology, School of ScienceIn Saccharomyces cerevisiae, the Pif1 helicase functions in both nuclear and mitochondrial DNA replication and repair processes, preferentially unwinding RNA:DNA hybrids and resolving G-quadruplex structures. We sought to determine how the various activities of Pif1 are regulated in vivo Here, we report lysine acetylation of nuclear Pif1 and demonstrate that it influences both Pif1's cellular roles and core biochemical activities. Using Pif1 overexpression toxicity assays, we determined that the acetyltransferase NuA4 and deacetylase Rpd3 are primarily responsible for the dynamic acetylation of nuclear Pif1. MS analysis revealed that Pif1 was modified in several domains throughout the protein's sequence on the N terminus (Lys-118 and Lys-129), helicase domain (Lys-525, Lys-639, and Lys-725), and C terminus (Lys-800). Acetylation of Pif1 exacerbated its overexpression toxicity phenotype, which was alleviated upon deletion of its N terminus. Biochemical assays demonstrated that acetylation of Pif1 stimulated its helicase, ATPase, and DNA-binding activities, whereas maintaining its substrate preferences. Limited proteolysis assays indicate that acetylation of Pif1 induces a conformational change that may account for its altered enzymatic properties. We propose that acetylation is involved in regulating of Pif1 activities, influencing a multitude of DNA transactions vital to the maintenance of genome integrity.