- Browse by Subject
Browsing by Subject "Lymphocyte Activation"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Evidence of mononuclear cell preactivation in the fasting state in polycystic ovary syndrome(Elsevier, 2014-12) González, Frank; Kirwan, John P.; Rote, Neal S.; Minium, Judi; Department of Obstetrics and Gynecology, IU School of MedicineOBJECTIVE: We evaluated mononuclear cell (MNC) preactivation in women with polycystic ovary syndrome (PCOS) by examining the effect of in vitro lipopolysaccharide (LPS) exposure on cytokine release in the fasting state. STUDY DESIGN: Twenty women with PCOS (10 lean, 10 obese) and 20 weight-matched controls (10 lean, 10 obese) volunteered for study participation. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release was measured from mononuclear cells isolated from fasting blood samples and cultured in the presence and absence of LPS. Plasma IL-6 was measured from the same fasting blood samples. Insulin sensitivity was derived from an oral glucose tolerance test using the Matsuda index, and truncal fat was measured by dual-energy x-ray absorptiometry. RESULTS: The percent change from baseline in TNF-α and IL-6 release from MNC following LPS exposure was increased (P < .04) in lean and obese women with PCOS and obese controls compared with lean controls. Plasma IL-6 was increased (P < .02) in obese women with PCOS compared with lean women with PCOS, which in turn was increased (P < .02) compared with lean controls. The MNC-derived TNF-α and IL-6 responses from MNCs were negatively correlated with insulin sensitivity (P < .03) and positively correlated with testosterone (P < .03) and androstenedione (P < .006) for the combined groups. Plasma IL-6 was positively correlated with percentage truncal fat (P < .008). CONCLUSION: In PCOS, increased cytokine release from MNCs following LPS exposure in the fasting state reveals the presence of MNC preactivation. Importantly, this phenomenon is independent of obesity and may contribute to the development of insulin resistance and hyperandrogenism in PCOS. In contrast, the source of plasma IL-6 elevations in PCOS may be excess adiposity.Item Myeloid-derived suppressor cells are involved in lysosomal acid lipase deficiency-induced endothelial cell dysfunctions(The American Association of Immunologists, 2014-08-15) Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong; Department of Pathology and Laboratory Medicine, IU School of MedicineThe underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal(-/-)) mice. We found that Ly6G(+) cells transmigrated more efficiently across lal(-/-) ECs than wild-type (lal(+/+)) ECs, which were associated with increased levels of PECAM-1 and MCP-1 in lal(-/-) ECs. In addition, lal(-/-) ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal(-/-) ECs also suppressed T cell proliferation in vitro. Interestingly, lal(-/-) Ly6G(+) cells promoted in vivo angiogenesis (including a tumor model), EC tube formation, and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal(-/-) ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G(+) cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species. Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL deficiency-related diseases.Item Paracrine IL-2 Is Required for Optimal Type 2 Effector Cytokine Production(American Association of Immunologists, 2017-06-01) Olson, Matthew R.; Ulrich, Benjamin J.; Hummel, Sarah A.; Khan, Ibrahim; Meuris, Brice; Cherukur, Yesesri; Dent, Alexander L.; Janga, Sarath Chandra; Kaplan, Mark H.; Pediatrics, School of MedicineIL-2 is a pleiotropic cytokine that promotes the differentiation of Th cell subsets, including Th1, Th2, and Th9 cells, but it impairs the development of Th17 and T follicular helper cells. Although IL-2 is produced by all polarized Th subsets to some level, how it impacts cytokine production when effector T cells are restimulated is unknown. We show in this article that Golgi transport inhibitors (GTIs) blocked IL-9 production. Mechanistically, GTIs blocked secretion of IL-2 that normally feeds back in a paracrine manner to promote STAT5 activation and IL-9 production. IL-2 feedback had no effect on Th1- or Th17-signature cytokine production, but it promoted Th2- and Th9-associated cytokine expression. These data suggest that the use of GTIs results in an underestimation of the presence of type 2 cytokine-secreting cells and highlight IL-2 as a critical component in optimal cytokine production by Th2 and Th9 cells in vitro and in vivo.Item STAT3 Impairs STAT5 Activation in the Development of IL-9-Secreting T Cells(The American Association of Immunologists, Inc., 2016-04-15) Olson, Matthew R.; Verdan, Felipe Fortino; Hufford, Matthew M.; Dent, Alexander L.; Kaplan, Mark H.; Pediatrics, School of MedicineTh cell subsets develop in response to multiple activating signals, including the cytokine environment. IL-9-secreting T cells develop in response to the combination of IL-4 and TGF-β, although they clearly require other cytokine signals, leading to the activation of transcription factors including STAT5. In Th17 cells, there is a molecular antagonism of STAT5 with STAT3 signaling, although whether this paradigm exists in other Th subsets is not clear. In this paper, we demonstrate that STAT3 attenuates the ability of STAT5 to promote the development of IL-9-secreting T cells. We demonstrate that production of IL-9 is increased in the absence of STAT3 and cytokines that result in a sustained activation of STAT3, including IL-6, have the greatest potency in repressing IL-9 production in a STAT3-dependent manner. Increased IL-9 production in the absence of STAT3 correlates with increased endogenous IL-2 production and STAT5 activation, and blocking IL-2 responses eliminates the difference in IL-9 production between wild-type and STAT3-deficient T cells. Moreover, transduction of developing Th9 cells with a constitutively active STAT5 eliminates the ability of IL-6 to reduce IL-9 production. Thus, STAT3 functions as a negative regulator of IL-9 production through attenuation of STAT5 activation and function.Item Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism(Nature Publishing Group, 2015-10) Mehrotra, Purvi; Patel, Jaymin B.; Ivancic, Carlie M.; Collett, Jason A.; Basile, David P.; Department of Cellular & Integrative Physiology, IU School of MedicineExposure of rats to elevated dietary salt following recovery from acute kidney injury (AKI) accelerates the transition to chronic kidney disease (CKD), and is dependent on lymphocyte activity. Here we tested whether high salt diet triggers lymphocyte activation in postischemic kidneys to worsen renal inflammation and fibrosis. Male Sprague-Dawley rats on a 0.4% salt diet were subjected to left unilateral ischemia-reperfusion and allowed to recover for 5 weeks. This resulted in a mild elevation of CD4(+) T cells relative to sham animals. Contralateral unilateral nephrectomy and elevated dietary salt (4%) for 4 extra weeks hastened CKD and interstitial fibrosis. Activated T cells were increased in the kidney threefold after 4 weeks of elevated dietary salt exposure relative to post-AKI rats before salt feeding. The T cell subset was largely positive for IL-17, indicative of Th-17 cells. Because angiotensin II activity may influence lymphocyte activation, injured rats were given the AT1R antagonist, losartan, along with high salt diet. This significantly reduced the number of renal Th-17 cells to levels of sham rats, and significantly reduced the salt-induced increase in fibrosis to about half. In vitro studies in AKI-primed CD4(+) T cells indicated that angiotensin II and extracellular sodium enhanced, and losartan inhibited, IL-17 expression. Thus, dietary salt modulates immune cell activity in postischemic recovering kidneys because of the activity of local RAS, suggesting the participation of these cells in CKD progression post-AKI.