- Browse by Subject
Browsing by Subject "Lung-brain axis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The bidirectional lung brain-axis of amyloid-β pathology: ozone dysregulates the peri-plaque microenvironment(Oxford University Press, 2023) Greve, Hendrik J.; Dunbar, August L.; Garza Lombo, Carla; Ahmed, Chandrama; Thang, Morrent; Messenger, Evan J.; Mumaw, Christen L.; Johnson, James A., Jr.; Kodavanti, Urmila P.; Oblak, Adrian L.; Block, Michelle L.; Pharmacology and Toxicology, School of MedicineThe mechanisms underlying how urban air pollution affects Alzheimer's disease (AD) are largely unknown. Ozone (O3) is a reactive gas component of air pollution linked to increased AD risk, but is confined to the respiratory tract after inhalation, implicating the peripheral immune response to air pollution in AD neuropathology. Here, we demonstrate that O3 exposure impaired the ability of microglia, the brain's parenchymal immune cells, to associate with and form a protective barrier around Aβ plaques, leading to augmented dystrophic neurites and increased Aβ plaque load. Spatial proteomic profiling analysis of peri-plaque proteins revealed a microenvironment-specific signature of dysregulated disease-associated microglia protein expression and increased pathogenic molecule levels with O3 exposure. Unexpectedly, 5xFAD mice exhibited an augmented pulmonary cell and humoral immune response to O3, supporting that ongoing neuropathology may regulate the peripheral O3 response. Circulating HMGB1 was one factor upregulated in only 5xFAD mice, and peripheral HMGB1 was separately shown to regulate brain Trem2 mRNA expression. These findings demonstrate a bidirectional lung-brain axis regulating the central and peripheral AD immune response and highlight this interaction as a potential novel therapeutic target in AD.Item The Role of the Lung-Brain Axis in the Ozone-Impaired Amyloid Associated Astrocytic and Vascular Phenotype(2024-06) Ahmed, Chandrama; Oblak, Adrian; Block, Michelle; Baucum, A. J.; Bissel, Stephanie J.; Nass, Richard M.Air pollution has been associated with an increased risk of Alzheimer’s Disease (AD). Studies show ozone (O3), a major component of urban air pollution, can exacerbate amyloid pathology. However, O3 reacts in its entirety with lung epithelial lining after inhalation, hence does not translocate to brain. Studies have implicated the lung−brain axis in O3 induced central nervous system (CNS) pathology. However, the mechanistic underpinnings of its role in amyloid pathology is obscure. Here, we explored the impact of O3 on the astrocytic and vascular response to amyloid plaque in 5xFAD mice and its link to the O3 lung response. O3 exposure increased GFAP positive astrocyte density correlating with increased plaque burden in the cortex. Focusing on the plaque microenvironment, we found O3 qualitatively altered plaque associated astrocytes, evidenced by both proteomic and transcriptomic changes. Along with loss of protein expression, proteomic changes reflected increased cell-cell interaction in plaque microenvironment. Specifically, we found increased astrocyte-microglia contact selectively in periplaque space from O3 exposure. Transcriptional analysis of periplaque astrocytes revealed an accelerated shift towards disease associated astrocyte (DAA) phenotype. Elevated circulating HMGB1 was previously found from O3 exposure. In this study we demonstrate deleting HMGB1 selectively in peripheral myeloid cells and not in CNS microglia ameliorates the lung immune response to O3 as well as downregulates DAA marker in the CNS, providing a potential link between peripheral HMGB1 and O3 induced astrocytic dysregulation. On examining vascular response to O3 we found increased vascular amyloid accumulation associated with an altered vascular proteomic profile. Our analysis indicates O3 potentially disrupts vascular function such as amyloid clearance. Taken together, our study demonstrates that astrocyte and neurovasculature are contributors to O3 lung-brain axis with important implications towards amyloid pathology progression and identifies peripheral myeloid HMGB1 as its potential modulator. Further studies are required to fully understand the consequences of this impact and its role in amyloid pathology.