- Browse by Subject
Browsing by Subject "Lung development"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Early angiogenic proteins associated with high risk for bronchopulmonary dysplasia and pulmonary hypertension in preterm infants(American Physiological Society, 2020-04-01) Arjaans, Sanne; Wagner, Brandie D.; Mourani, Peter M.; Mandell, Erica W.; Poindexter, Brenda B.; Berger, Rolf M.F.; Abman, Steven H.; Pediatrics, School of MedicineEarly pulmonary vascular disease in preterm infants is associated with the subsequent development of bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH); however, mechanisms that contribute to or identify infants with increased susceptibility for BPD and/or PH are incompletely understood. Therefore, we tested if changes in circulating angiogenic peptides during the first week of life are associated with the later development of BPD and/or PH. We further sought to determine alternate peptides and related signaling pathways with the risk for BPD or PH. We prospectively enrolled infants with gestational age <34 wk and collected blood samples during their first week of life. BPD and PH were assessed at 36 wk postmenstrual age. Samples were assayed for each of the 1,121 peptides included in the SOMAscan scan technology, with subsequent pathway analysis. Of 102 infants in the study, 82 had BPD, and 13 had PH. Multiple angiogenic proteins (PF-4, VEGF121, ANG-1, bone morphogenetic protein 10 [BMP10], hepatocyte growth factor (HGF), ANG-2) were associated with the subsequent diagnosis of BPD; and FGF-19, PF-4, connective tissue activating peptide (CTAP)-III, and PDGF-AA levels were associated with BPD severity. Early increases in BMP10 was strongly associated with the late risk for BPD and PH. We found that early alterations of circulating angiogenic peptides and others were associated with the subsequent development of BPD. We further identified peptides that were associated with BPD severity and BPD-associated PH, including BMP10. We speculate that proteomic biomarkers during the first week of life may identify infants at risk for BPD and/or PH to enhance care and research.Item Influence of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 on epithelial differentiation and organization during lung development(American Physiological Society, 2020-08) Lee, Daniel D.; Hochstetler, Alexandra; Sah, Eric; Xu, Haiming; Lowe, Chinn-Woan; Santiaguel, Sara; Thornton, Janet Lea; Pajakowski, Adam; Schwarz, Margaret A.; Anatomy and Cell Biology, School of MedicineProper development of the respiratory bronchiole and alveolar epithelium proceeds through coordinated cross talk between the interface of epithelium and neighboring mesenchyme. Signals that facilitate and coordinate the cross talk as the bronchial forming canalicular stage transitions to construction of air-exchanging capillary-alveoli niche in the alveolar stage are poorly understood. Expressed within this decisive region, levels of aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1) inversely correlate with the maturation of the lung. The present study addresses the role of AIMP1 in lung development through the generation and characterization of Aimp1−/− mutant mice. Mating of Aimp1+/− produced offspring in expected Mendelian ratios throughout embryonic development. However, newborn Aimp1−/− pups exhibited neonatal lethality with mild cyanosis. Imaging both structure and ultrastructure of Aimp1−/− lungs showed disorganized bronchial epithelium, decreased type I but not type II cell differentiation, increased distal vessels, and disruption of E-cadherin deposition in cell-cell junctions. Supporting the in vivo findings of disrupted epithelial cell-cell junctions, in vitro biochemical experiments show that a portion of AIMP1 binds to phosphoinositides, the lipid anchor of proteins that have a fundamental role in both cellular membrane and actin cytoskeleton organization; a dramatic disruption in F-actin cytoskeleton was observed in Aimp1−/− mouse embryonic fibroblasts. Such observed structural defects may lead to disrupted cell-cell boundaries. Together, these results suggest a requirement of AIMP1 in epithelial cell differentiation in proper lung development.Item A shift from glycolytic and fatty acid derivatives toward one-carbon metabolites in the developing lung during transitions of the early postnatal period(American Physiological Society, 2021) Lee, Daniel D.; Park, Sang Jun; Zborek, Kirsten L.; Schwarz, Margaret A.; Pediatrics, School of MedicineDuring postnatal lung development, metabolic changes that coincide with stages of alveolar formation are poorly understood. Responding to developmental and environmental factors, metabolic changes can be rapidly and adaptively altered. The objective of the present study was to determine biological and technical determinants of metabolic changes during postnatal lung development. Over 118 metabolic features were identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS, Sciex QTRAP 5500 Triple Quadrupole). Biological determinants of metabolic changes were the transition from the postnatal saccular to alveolar stages and exposure to 85% hyperoxia, an environmental insult. Technical determinants of metabolic identification were brevity and temperature of harvesting, both of which improved metabolic preservation within samples. Multivariate statistical analyses revealed the transition between stages of lung development as the period of major metabolic alteration. Of three distinctive groups that clustered by age, the saccular stage was identified by its enrichment of both glycolytic and fatty acid derivatives. The critical transition between stages of development were denoted by changes in amino acid derivatives. Of the amino acid derivatives that significantly changed, a majority were linked to metabolites of the one-carbon metabolic pathway. The enrichment of one-carbon metabolites was independent of age and environmental insult. Temperature was also found to significantly influence the metabolic levels within the postmortem sampled lung, which underscored the importance of methodology. Collectively, these data support not only distinctive stages of metabolic change but also highlight amino acid metabolism, in particular one-carbon metabolites as metabolic signatures of the early postnatal lung.Item α5β1 integrin mediates pulmonary epithelial cyst formation(Wiley, 2017-06) Legan, Susan K.; Lee, Daniel D.; Schwarz, Margaret A.; Pediatrics, School of MedicineBACKGROUND: Formation of the epithelial cyst involves the establishment of apical-basolateral polarity through a series of cellular interactions that are in part mediated by the extracellular matrix (ECM). We report that in a three-dimensional multi-cellular self-assembly model of lung development, α5 integrin regulates epithelial cyst formation through organization of soluble fibronectin matrix into insoluble fibrils through a process called fibrillogenesis. RESULTS: Dissociated murine embryonic lung cells self-assemble into three-dimensional pulmonary bodies that are dependent on α5β1 integrin mediated fibrillogenesis for cell-cell mediated self-assembly: compaction and epithelial cyst formation. Knockdown of α5 integrin resulted in a significant increase in another mediator of fibrillogenesis, αV integrin. Compensatory increased expression of another mediator of fibrillogenesis, αV integrin, was not sufficient to normalize epithelial cyst formation. Loss of α5 integrin-mediated fibrillogenesis perturbed the ability of clustered epithelial cells to establish clear polarity, loss of epithelial cell pyramidal shape, and disrupted apical F-actin-rich deposition. Lack of rich central epithelial localization of F-actin cytoskeleton and Podocalyxin suggests that loss of α5 integrin-mediated fibrillogenesis interferes with the normal cytoskeleton organization that facilitates epithelial cysts polarization. CONCLUSIONS: We conclude that lung epithelial cyst formation in development is mediated in part by α5β1 integrin dependent fibrillogenesis