- Browse by Subject
Browsing by Subject "Lucilia cuprina"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparative genomics of the sheep blow fly Lucilia cuprina(Office of the Vice Chancellor for Research, 2016-04-08) Picard, Christine J.; Andere, Anne A.Insects employ different adaptive strategies in response to selective pressures, such as competition for limited resources. Carrion insects provide the ideal case to study these fundamental processes of adaptive evolution due to the intense selective pressures placed on developing larvae with limited food resources, their widespread and abundant distributions, and the presence of geographically distinct populations with specialized adaptations. One adaptation is facultative ectoparasitism, where the insect strikes a healthy animal and feeds on the living flesh, providing a developmental advantage over competitor fly species, but causing significant harm to the host. Lucilia species, which hybridize in the wild and form geographically distinct subpopulations in other regions, are diverging, meaning that we can observe and quantify early biological adaptive processes that govern speciation as they are occurring over hundreds, instead of millions, of years. The draft genome of a North American male Lucilia cuprina fly (carrion breeder) was assembled using a combination of short and long read sequences. This genome is compared to an existing Australian draft genome (ectoparasite) by elucidating genomic structure in key adaptive processes (i.e. immune system evasion) via high-throughput re-sequencing of parasitic specimens, gene prediction and annotation. The carcass colonized by or animal parasitized by both species, with some geographic overlap, provides a semi-controlled environment within the larger context of the ecosystem to sample a large number of individuals with similar life history strategies, allowing for direct comparative studies to elucidate the correlation between structure and function in the genomes of carrion flies – allowing us to understand biological adaptation and speciation.Item Factors Affecting Species Identifications of Blow Fly Pupae Based upon Chemical Profiles and Multivariate Statistics(MDPI, 2017-04-11) Kranz, William; Carroll, Clinton; Dixon, Darren A.; Goodpaster, John V.; Picard, Christine J.; Chemistry and Chemical Biology, School of ScienceAlternative methods for the identification of species of blow fly pupae have been developed over the years that consist of the analyses of chemical profiles. However, the effect of biotic and abiotic factors that could influence the predictive manner for the tests have not been evaluated. The lipids of blowfly pupae (Cochliomyia macellaria, Lucilia cuprina, Lucilia sericata, and Phormia regina) were extracted in pentane, derivatized, and analyzed by total-vaporization solid phase microextraction gas chromatography-mass spectrometry (TV-SPME GC-MS). Peak areas for 26 compounds were analyzed. Here we evaluated one biotic factor (colonization) on four species of blow flies to determine how well a model produced from lipid profiles of colonized flies predicted the species of flies of offspring of wild-caught flies and found very good species identification following 10 generations of inbreeding. When we evaluated four abiotic factors in our fly rearing protocols (temperature, humidity, pupation substrate, and diet), we found that the ability to assign the chemical profile to the correct species was greatly reduced.