ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Longitudinal data analysis"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Novel statistical models for ecological momentary assessment studies of sexually transmitted infections
    (2016-07-18) He, Fei; Harezlak, Jaroslaw; Liu, Ziyue; Monahan, Patrick; Hensel, Devon J.
    The research ideas included in this dissertation are motivated by a large sexually trans mitted infections (STIs) study (IU Phone study), which is also an ecological momentary assessment (EMA) study implemented by Indiana University from 2008 to 2013. EMA, as a group of methods used to collect subjects’ up-to-date behaviors and status, can increase the accuracy of this information by allowing a participant to self-administer a survey or diary entry, in their own environment, as close to the occurrence of the behavior as possible. IU Phone study’s high reporting level shows one of the benefits gain from introducing EMA in STIs study. As a prospective study lasting for 84 days, participants in IU Phone study undergo STI testing and complete EMA forms with project-furnished cellular telephones according to the predetermined schedules. At pre-selected eight-hour intervals, participants respond to a series of questions to identify sexual and non-sexual interactions with specific partners including partner name, relationship satisfaction and sexual satisfaction with this partner, time of each coital event and condom use for each event. etc. STIs lab results of all the participants are collected weekly as well. We are interested in several variables related to the risk of infection and sexual or non-sexual behaviors, especially the relationship among the longitudinal processes of those variables. New statistical models and applications are established to deal with the data with complex dependence and sampling data structures. The methodologies covers various of statistical aspect like generalized mixed models, mul tivariate models and autoregressive and cross-lagged model in longitudinal data analysis, misclassification adjustment in imperfect diagnostic tests, and variable-domain functional regression in functional data analysis. The contribution of our work is we bridge the meth ods from different areas with EMA data in the IU Phone study and also build up a novel understanding of the association among all the variables of interest from different perspec tives based on the characteristic of the data. Besides all the statistical analyses included in this dissertation, variety of data visualization techniques also provide informative support in presenting the complex EMA data structure.
  • Loading...
    Thumbnail Image
    Item
    Single-index regression models
    (2015-05) Wu, Jingwei; Tu, Wanzhu
    Useful medical indices pose important roles in predicting medical outcomes. Medical indices, such as the well-known Body Mass Index (BMI), Charleson Comorbidity Index, etc., have been used extensively in research and clinical practice, for the quantification of risks in individual patients. However, the development of these indices is challenged; and primarily based on heuristic arguments. Statistically, most medical indices can be expressed as a function of a linear combination of individual variables and fitted by single-index model. Single-index model represents a way to retain latent nonlinear features of the data without the usual complications that come with increased dimensionality. In my dissertation, I propose a single-index model approach to analytically derive indices from observed data; the resulted index inherently correlates with specific health outcomes of interest. The first part of this dissertation discusses the derivation of an index function for the prediction of one outcome using longitudinal data. A cubic-spline estimation scheme for partially linear single-index mixed effect model is proposed to incorporate the within-subject correlations among outcome measures contributed by the same subject. A recursive algorithm based on the optimization of penalized least square estimation equation is derived and is shown to work well in both simulated data and derivation of a new body mass measure for the assessment of hypertension risk in children. The second part of this dissertation extends the single-index model to a multivariate setting. Specifically, a multivariate version of single-index model for longitudinal data is presented. An important feature of the proposed model is the accommodation of both correlations among multivariate outcomes and among the repeated measurements from the same subject via random effects that link the outcomes in a unified modeling structure. A new body mass index measure that simultaneously predicts systolic and diastolic blood pressure in children is illustrated. The final part of this dissertation shows existence, root-n strong consistency and asymptotic normality of the estimators in multivariate single-index model under suitable conditions. These asymptotic results are assessed in finite sample simulation and permit joint inference for all parameters.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University