- Browse by Subject
Browsing by Subject "Long non-coding RNAs"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Concise Review: Functional Roles and Therapeutic Potentials of Long Non-coding RNAs in Cholangiopathies(Frontiers Media, 2020-02) Sato, Keisaku; Glaser, Shannon; Francis, Heather; Alpini, Gianfranco; Medicine, School of MedicineLong non-coding RNAs (lncRNAs) are RNAs with lengths exceeding 200 nucleotides that are not translated into proteins. It is well-known that small non-coding RNAs, such as microRNAs (miRNAs), regulate gene expression and play an important role in cholangiopathies. Recent studies have demonstrated that lncRNAs may also play a key role in the pathophysiology of cholangiopathies. Patients with cholangiopathies often develop cholangiocarcinoma (CCA), which is cholangiocyte-derived cancer, in the later stage. Cholangiocytes are a primary target of therapies for cholangiopathies and CCA development. Previous studies have demonstrated that expression levels of lncRNAs are altered in the liver of cholangiopathies or CCA tissues. Some lncRNAs regulate gene expression by inhibiting functions of miRNAs leading to diseased liver conditions or CCA progression, suggesting that lncRNAs could be a novel therapeutic target for those disorders. This review summarizes current understandings of functional roles of lncRNAs in cholangiopathies and seek their potentials for novel therapies.Item Elucidating the Functional Roles of Long Non-Coding RNAs in Alzheimer’s Disease(MDPI, 2024-08-25) Huang, Zhenyu; Chen, Qiufen; Mu, Xuechen; An, Zheng; Xu, Ying; Medicine, School of MedicineAlzheimer's disease (AD) is a multifaceted neurodegenerative disorder characterized by cognitive decline and neuronal loss, representing a most challenging health issue. We present a computational analysis of transcriptomic data of AD tissues vs. healthy controls, focused on the elucidation of functional roles played by long non-coding RNAs (lncRNAs) throughout the AD progression. We first assembled our own lncRNA transcripts from the raw RNA-Seq data generated from 527 samples of the dorsolateral prefrontal cortex, resulting in the identification of 31,574 novel lncRNA genes. Based on co-expression analyses between mRNAs and lncRNAs, a co-expression network was constructed. Maximal subnetworks with dense connections were identified as functional clusters. Pathway enrichment analyses were conducted over mRNAs and lncRNAs in each cluster, which served as the basis for the inference of functional roles played by lncRNAs involved in each of the key steps in an AD development model that we have previously built based on transcriptomic data of protein-encoding genes. Detailed information is presented about the functional roles of lncRNAs in activities related to stress response, reprogrammed metabolism, cell polarity, and development. Our analyses also revealed that lncRNAs have the discerning power to distinguish between AD samples of each stage and healthy controls. This study represents the first of its kind.Item Lipid droplet-associated lncRNA LIPTER preserves cardiac lipid metabolism(Springer Nature, 2023) Han, Lei; Huang, Dayang; Wu, Shiyong; Liu, Sheng; Wang, Cheng; Sheng, Yi; Lu, Xiongbin; Broxmeyer, Hal E.; Wan, Jun; Yang, Lei; Pediatrics, School of MedicineLipid droplets (LDs) are cellular organelles critical for lipid homeostasis, with intramyocyte LD accumulation implicated in metabolic disorder-associated heart diseases. Here we identify a human long non-coding RNA, Lipid-Droplet Transporter (LIPTER), essential for LD transport in human cardiomyocytes. LIPTER binds phosphatidic acid and phosphatidylinositol 4-phosphate on LD surface membranes and the MYH10 protein, connecting LDs to the MYH10-ACTIN cytoskeleton and facilitating LD transport. LIPTER and MYH10 deficiencies impair LD trafficking, mitochondrial function and survival of human induced pluripotent stem cell-derived cardiomyocytes. Conditional Myh10 deletion in mouse cardiomyocytes leads to LD accumulation, reduced fatty acid oxidation and compromised cardiac function. We identify NKX2.5 as the primary regulator of cardiomyocyte-specific LIPTER transcription. Notably, LIPTER transgenic expression mitigates cardiac lipotoxicity, preserves cardiac function and alleviates cardiomyopathies in high-fat-diet-fed and Leprdb/db mice. Our findings unveil a molecular connector role of LIPTER in intramyocyte LD transport, crucial for lipid metabolism of the human heart, and hold significant clinical implications for treating metabolic syndrome-associated heart diseases.Item Regulation of cellular sterol homeostasis by the oxygen responsive noncoding RNA lincNORS(Nature Publishing Group, 2020-09-21) Wu, Xue; Niculite, Cristina M.; Preda, Mihai Bogdan; Rossi, Annalisa; Tebaldi, Toma; Butoi, Elena; White, Mattie K.; Tudoran, Oana M.; Petrusca, Daniela N.; Jannasch, Amber S.; Bone, William P.; Zong, Xingyue; Fang, Fang; Burlacu, Alexandrina; Paulsen, Michelle T.; Hancock, Brad A.; Sandusky, George E.; Mitra, Sumegha; Fishel, Melissa L.; Buechlein, Aaron; Ivan, Cristina; Oikonomopoulos, Spyros; Gorospe, Myriam; Mosley, Amber; Radovich, Milan; Davé, Utpal P.; Ragoussis, Jiannis; Nephew, Kenneth P.; Mari, Bernard; McIntyre, Alan; Konig, Heiko; Ljungman, Mats; Cousminer, Diana L.; Macchi, Paolo; Ivan, Mircea; Medicine, School of MedicineWe hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O2 in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components. Mechanistically, the function of lincNORS requires the presence of RALY, an RNA-binding protein recently found to be implicated in cholesterol homeostasis. We also noticed the proximity between this locus and naturally occurring genetic variations highly significant for sterol/steroid-related phenotypes, in particular the age of sexual maturation. An integrative analysis of these variants provided a more formal link between these phenotypes and lincNORS, further strengthening the case for its biological relevance.