- Browse by Subject
Browsing by Subject "Loess Plateau"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Age-related water use characteristics of Robinia pseudoacacia on the Loess Plateau(Elsevier, 2021-05) Wang, Jian; Fu, Bojie; Jiao, Lei; Lu, Nan; Li, Jianye; Chen, Weiliang; Wang, Lixin; Earth Sciences, School of ScienceUnderstanding water use characteristics of revegetation species is crucial for evaluating plant adaptability and guiding the sustainability of vegetation restoration in semiarid regions. Ecological restoration projects have been implemented for decades in degraded ecosystems, achieving significant changes in vegetation cover. However, water use characteristics of the main tree species at different ages remain poorly understood in such systems. We investigated water use characteristics of Robinia pseudoacacia in plantations of different stand-age (18 and 30 years). The species is the most widely planted tree in revegetation efforts on the Loess Plateau. The δ2H and δ18O of xylem and soil water within 500 cm of the soil surface and the δ13C values of plant leaves were measured during two consecutive hydrological years. The results showed that that water uptake proportions from across the soil columns changed in 18-yr R. pseudoacacia between a drier (2016) and wetter year (2017). In contrast, shallow soil water was largely comparable in a stand of 30-yr R. pseudoacacia in 2016 and 2017, and similarly the pattern of water uptake by roots from the middle and deep soil column was comparable. However, leaf-level water use efficiency (WUEi) of trees in the older plantation was higher during the wetter year, thereby partly alleviating a low infiltration to precipitation ratio. These findings suggest that different stand-age plantation trees have distinct water use characteristics and display different responses to variations in precipitation. Older plantation trees respond to increased water availability by increasing WUEi instead of switching water sources. This means that stand-age is an essential factor to be considered in ecological restoration management, which can enhance the effectiveness of vegetation restoration strategies. The study indicates useful input from research to management throughout the continuity of restoration effort.Item Distribution of Shrubland and Grassland Soil Erodibility on the Loess Plateau(MDPI, 2018-06) Zhang, Xiao; Zhao, Wenwu; Wang, Lixin; Liu, Yuanxin; Feng, Qiang; Fang, Xuening; Liu, Yue; Earth Sciences, School of ScienceSoil erosion is one of the most severe problems facing environments and has increased throughout the 20th century. Soil erodibility (K-factor) is one of the important indicators of land degradation, and many models have been used to estimate K values. Although soil erodibility has been estimated, the comparison of different models and their usage at a regional scale and, in particular, for different land use types, need more research. Four of the most widely distributed land use types were selected to analyze, including introduced and natural grassland, as well as introduced and natural shrubland. Soil particle size, soil organic matter and other relevant soil properties were measured to estimate soil erodibility in the Loess Plateau. The results show that: (1) the erosion productivity impact calculator (EPIC) model and SHIRAZI model are both suitable for the Loess Plateau, while the SHIRAZI model has the advantage of fewer parameters; (2) introduced grassland has better ability to protect both the 0–5 cm soils and 5–20 cm soils, while the differences between introduced and natural shrubland are not obvious at a catchment scale; (3) the K values of introduced grassland, natural grassland, introduced shrubland and natural shrubland in the 0–5 cm layer vary from 0.008 to 0.037, 0.031 to 0.046, 0.012 to 0.041 and 0.008 to 0.045 (t·hm2·h/(MJ·mm·hm2)), while the values vary from 0.009 to 0.039, 0.032 to 0.046, 0.012 to 0.042 and 0.008 to 0.048 (t·hm2·h/(MJ·mm·hm2)) in the 5–20 cm layer. The areas with a mean multiyear precipitation of 370–440 mm are the most important places for vegetation restoration construction management at a regional scale. A comprehensive balance between water conservation and soil conservation is needed and important when selecting the species used to vegetation restoration. This study provides suggestions for ecological restoration and provides a case study for the estimate of soil erodibility in arid and semiarid areas.