- Browse by Subject
Browsing by Subject "Locomotor activity"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Characterization of the relationship between spontaneous locomotor activity and cardiovascular parameters in conscious freely moving rats(Elsevier, 2016-02) Zaretsky, Dmitry V.; Zaretskaia, Maria V.; DiMicco, Joseph A.; Department of Emergency Medicine, IU School of MedicineIn freely behaving rats, variations in heart rate (HR) and blood pressure (BP) are coupled closely with changes in locomotor activity (Act). We have attempted to characterize this relationship mathematically. In 10- and 16-week-old rats, HR, BP and Act were recorded telemetrically every minute for 2 days under 12h:12h light-dark cycling. After examining data for individual rats, we found that the relationship between Act and HR could be approximated by the negative exponential function HR(Act)=HRmax-(HRmax-HRmin)∗exp(-Act/Acte), where HRmax, HRmin, and Acte are constants. These constants were calculated separately for light and dark periods by non-linear curve fitting. HR corresponding to maximal locomotion was similar during the light and dark phases, while HR at rest during the dark phase was higher than during the light phase. The range of HR variability associated with Act during the dark phase was similar in young and older animals, but minimal HR was significantly lower in older rats. The relationship between Act and BP was approximated with a similar function. We have found no differences between BP at rest and at maximal locomotion between light and dark and between 10-week and 16-week-old rats. Our results indicate that in rats, cardiovascular parameters are coupled to locomotion to a high degree; however both the HR and the BP reach maximal values when locomotor activity is relatively low. We also found that the phase of daily cycle affects HR in conscious rats independent of locomotor activity.Item Sexually dimorphic DYRK1A overexpression on postnatal day 15 in the Ts65Dn mouse model of Down syndrome: Effects of pharmacological targeting on behavioral phenotypes(Elsevier, 2022) Hawley, Laura E.; Prochaska, Faith; Stringer, Megan; Goodlett, Charles R.; Roper, Randall J.; Biology, School of ScienceThe neurotypical spatiotemporal patterns of gene expression are disrupted in Down syndrome (DS) by trisomy of human chromosome 21 (Hsa21), resulting in altered behavioral development and brain circuitry. The Ts65Dn DS mouse model exhibits similar phenotypes to individuals with DS due to three copies of approximately one-half of the genes found on Hsa21. Dual-specificity Tyrosine Phosphorylation-regulated Kinase 1a (Dyrk1a), one of these triplicated genes, is an attractive target to normalize brain development due to its influence in cellular brain deficits seen in DS. We hypothesized that postnatal development of DYRK1A expression is dysregulated in trisomic animals, and found significant overexpression of DYRK1A in the hippocampus, cerebral cortex, and cerebellum at postnatal day (P) 15 in male—but not female—Ts65Dn mice. We then hypothesized the existence of sex-dependent effects of trisomy on neurobehavioral attributes during P16-17, and that administration of a DYRK1A inhibitor (CX-4945, ∼75mg/kg) beginning on P14 would normalize aberrant behavior in trisomic animals. Both male and female trisomic mice given control injections of phosphate buffered saline (PBS) displayed sustained levels of locomotor activity over a 10-minute test in contrast to the PBS-treated euploid animals that showed significant within-session habituation. Trisomic animals were more persistent in choosing to remain in home shavings in a preference test. Treatment with CX-4945 failed to confirm therapeutic effects. CX-4945 prevented growth, and both CX-4945 and its 10% dimethyl sulfoxide vehicle affected locomotor activity in trisomic and euploid groups, indicating a non-specific disruption of behavior. Despite the negative outcomes for CX-4945, the novel demonstration of sexually dimorphic DYRK1A expression in trisomic animals at P15 supports the broader hypothesis that overexpression of trisomic genes in DS can vary with age, sex, and brain region. Identifying the developmental timing of periods of dysregulated DYRK1A may be important for understanding individual differences in neurodevelopmental trajectories in DS and for developing effective therapeutic interventions targeting DYRK1A.Item Yohimbine is a 5-HT1A agonist in rats in doses exceeding 1 mg/kg.(Elsevier, 2015-10-08) Zaretsky, Dmitry V.; Zaretskaia, Maria V.; DiMicco, Joseph A.; Rusyniak, Daniel E.; Department of Emergency Medicine, IU School of MedicineYohimbine is a prototypical alpha2-adrenergic receptor antagonist. Due to its relatively high selectivity, yohimbine is often used in experiments whose purpose is to examine the role of these receptors. For example, yohimbine has been employed at doses of 1–5 mg/kg to reinstate drug-seeking behavior after extinction or to antagonize general anesthesia, an effects presumably being a consequence of blocking alpha2-adrenergic receptors. In this report we characterized dose-dependent autonomic and behavioral effects of yohimbine and its interaction with an antagonist of 5-HT1A receptors, WAY 100635. In low doses (0.5 – 2 mg/kg i.p.) yohimbine induced locomotor activation which was accompanied by a tachycardia and mild hypertension. Increasing the dose to 3–4.5 mg/kg reversed the hypertension and locomotor activation and induced profound hypothermia. The hypothermia as well as the suppression of the locomotion and the hypertension could be reversed by the blockade of 5-HT1A receptors with WAY 100635. Our data confirm that yohimbine possesses 5-HT1A properties, and demonstrated that in doses above 1 mg/kg significantly activate these receptors.