ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Liver steatosis"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Pregnancy facilitates maternal liver regeneration after partial hepatectomy
    (American Physiological Society, 2020-04-01) Lee, Joonyong; Garcia, Veronica; Nambiar, Shashank Manohar; Jiang, Huaizhou; Dai, Guoli; Biology, School of Science
    Liver resection induces robust liver regrowth or regeneration to compensate for the lost tissue mass. In a clinical setting, pregnant women may need liver resection without terminating pregnancy in some cases. However, how pregnancy affects maternal liver regeneration remains elusive. We performed 70% partial hepatectomy (PH) in nonpregnant mice and gestation day 14 mice, and histologically and molecularly compared their liver regrowth during the next 4 days. We found that compared with the nonpregnant state, pregnancy altered the molecular programs driving hepatocyte replication, indicated by enhanced activities of epidermal growth factor receptor and STAT5A, reduced activities of cMet and p70S6K, decreased production of IL-6, TNFα, and hepatocyte growth factor, suppressed cyclin D1 expression, increased cyclin A1 expression, and early activated cyclin A2 expression. As a result, pregnancy allowed the remnant hepatocytes to enter the cell cycle at least 12 h earlier, increased hepatic fat accumulation, and enhanced hepatocyte mitosis. Consequently, pregnancy ameliorated maternal liver regeneration following PH. In addition, a report showed that maternal liver regrowth after PH is driven mainly by hepatocyte hypertrophy rather than hyperplasia during the second half of gestation in young adult mice. In contrast, we demonstrate that maternal liver relies mainly on hepatocyte hyperplasia instead of hypertrophy to restore the lost mass after PH. Overall, we demonstrate that pregnancy facilitates maternal liver regeneration likely via triggering an early onset of hepatocyte replication, accumulating excessive liver fat, and promoting hepatocyte mitosis. The results from our current studies enable us to gain more insights into how maternal liver regeneration progresses during gestation.NEW & NOTEWORTHY We demonstrate that pregnancy may generate positive effects on maternal liver regeneration following partial hepatectomy, which are manifested by early entry of the cell cycle of remnant hepatocytes, increased hepatic fat accumulation, enhanced hepatocyte mitosis, and overall accelerated liver regrowth.
  • Loading...
    Thumbnail Image
    Item
    Silencing FAF2 mitigates alcohol-induced hepatic steatosis by modulating lipolysis and PCSK9 pathway
    (Wolters Kluwer, 2025-02-19) Huda, Nazmul; Kusumanchi, Praveen; Jiang, Yanchao; Gao, Hui; Thoudam, Themis; Zeng, Ge; Skill, Nicholas J.; Sun, Zhaoli; Liangpunsakul, Suthat; Ma, Jing; Yang, Zhihong; Medicine, School of Medicine
    Background: Chronic alcohol consumption leads to lipid accumulation, oxidative stress, cellular damage, and inflammation in the liver, collectively referred to as alcohol-associated liver disease (ALD). FAF2/UBXD8/ETEA (Fas-associated factor 2) is a ubiquitin ligase adaptor protein that plays a crucial role in the ubiquitin-mediated degradation of misfolded proteins in the endoplasmic reticulum. A recent genome-wide association study indicated an association between FAF2 and ALD; however, the exact contribution of FAF2 to ALD pathogenesis remains unclear. Methods: FAF2 was knocked down using AAV-delivered shRNA in C57/BL6 mice. Mice were subjected to a chronic-plus-single binge ethanol feeding (NIAAA) model. Nine hours after gavage, liver, blood, and other organs of interest were collected for gene expression and biochemical analyses. Results: We first observed a significant elevation in hepatic FAF2 protein expression in individuals with ALD and in mice subjected to an ethanol-binge model. Interestingly, knocking down FAF2 in the liver using adeno-associated virus serotype 8-delivered short hairpin RNA conferred a protective effect against alcohol-induced liver steatosis in ethanol-binged mice. Transcriptomic analysis revealed that differentially expressed genes were enriched in multiple lipid metabolism regulation pathways. Further analysis of transcription factors regulating these differentially expressed genes suggested potential regulation by SREBP1. Several SREBP1 target genes, including Fasn, Scd1, Lpin1, and Pcsk9 (proprotein convertase subtilisin/kexin type 9), were dysregulated in the livers of ethanol-fed FAF2 knockdown mice. Additionally, Pcsk9 could be regulated through the FOXO3-SIRT6 pathway in the livers of ethanol-fed FAF2 knockdown mice, leading to increased liver low-density lipoprotein receptor expression and reduced plasma LDL cholesterol levels. Furthermore, FAF2 knockdown in mouse liver enhanced adipose triglyceride lipase lipolytic activity by upregulating the adipose triglyceride lipase activator, comparative gene identification-58, and downregulating the adipose triglyceridelipase transport inhibitor, Elmod2, contributing to the alleviation of liver steatosis. Conclusions: Our study uncovers a novel mechanism involving FAF2 in the pathogenesis of ALD.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University