- Browse by Subject
Browsing by Subject "Liver metastases"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item ACVR2B antagonism as a countermeasure to multi‐organ perturbations in metastatic colorectal cancer cachexia(Wiley, 2020-12) Huot, Joshua R.; Pin, Fabrizio; Narasimhan, Ashok; Novinger, Leah J.; Keith, Austin S.; Zimmers, Teresa A.; Willis, Monte S.; Bonetto, Andrea; Surgery, School of MedicineBackground: Advanced colorectal cancer (CRC) is often accompanied by the development of liver metastases, as well as cachexia, a multi-organ co-morbidity primarily affecting skeletal (SKM) and cardiac muscles. Activin receptor type 2B (ACVR2B) signalling is known to cause SKM wasting, and its inhibition restores SKM mass and prolongs survival in cancer. Using a recently generated mouse model, here we tested whether ACVR2B blockade could preserve multiple organs, including skeletal and cardiac muscle, in the presence of metastatic CRC. Methods: NSG male mice (8 weeks old) were injected intrasplenically with HCT116 human CRC cells (mHCT116), while sham-operated animals received saline (n = 5-10 per group). Sham and tumour-bearing mice received weekly injections of ACVR2B/Fc, a synthetic peptide inhibitor of ACVR2B. Results: mHCT116 hosts displayed losses in fat mass ( - 79%, P < 0.0001), bone mass ( - 39%, P < 0.05), and SKM mass (quadriceps: - 22%, P < 0.001), in line with reduced muscle cross-sectional area ( - 24%, P < 0.01) and plantarflexion force ( - 28%, P < 0.05). Further, despite only moderately affected heart size, cardiac function was significantly impaired (ejection fraction %: - 16%, P < 0.0001; fractional shortening %: - 25%, P < 0.0001) in the mHCT116 hosts. Conversely, ACVR2B/Fc preserved fat mass ( + 238%, P < 0.001), bone mass ( + 124%, P < 0.0001), SKM mass (quadriceps: + 31%, P < 0.0001), size (cross-sectional area: + 43%, P < 0.0001) and plantarflexion force ( + 28%, P < 0.05) in tumour hosts. Cardiac function was also completely preserved in tumour hosts receiving ACVR2B/Fc (ejection fraction %: + 19%, P < 0.0001), despite no effect on heart size. RNA sequencing analysis of heart muscle revealed rescue of genes related to cardiac development and contraction in tumour hosts treated with ACVR2B/Fc. Conclusions: Our metastatic CRC model recapitulates the multi-systemic derangements of cachexia by displaying loss of fat, bone, and SKM along with decreased muscle strength in mHCT116 hosts. Additionally, with evidence of severe cardiac dysfunction, our data support the development of cardiac cachexia in the occurrence of metastatic CRC. Notably, ACVR2B antagonism preserved adipose tissue, bone, and SKM, whereas muscle and cardiac functions were completely maintained upon treatment. Altogether, our observations implicate ACVR2B signalling in the development of multi-organ perturbations in metastatic CRC and further dictate that ACVR2B represents a promising therapeutic target to preserve body composition and functionality in cancer cachexia.Item HCT116 colorectal liver metastases exacerbate muscle wasting in a mouse model for the study of colorectal cancer cachexia(Company of Biologists, 2020-01-24) Huot, Joshua R.; Novinger, Leah J.; Pin, Fabrizio; Bonetto, Andrea; Surgery, School of MedicineColorectal cancer (CRC) is often accompanied by formation of liver metastases (LM) and skeletal muscle wasting, i.e. cachexia. Despite affecting the majority of CRC patients, cachexia remains underserved, understudied and uncured. Animal models for the study of CRC-induced cachexia, in particular models containing LM, are sparse; therefore, we aimed to characterize two new models of CRC cachexia. Male NSG mice were injected subcutaneously (HCT116) or intrasplenically (mHCT116) with human HCT116 CRC tumor cells to disseminate LM, whereas experimental controls received saline (n=5-8/group). Tumor growth was accompanied by loss of skeletal muscle mass (HCT116: -20%; mHCT116: -31%; quadriceps muscle) and strength (HCT116: -20%; mHCT116: -27%), with worsened loss of skeletal muscle mass in mHCT116 compared with HCT116 (gastrocnemius: -19%; tibialis anterior: -22%; quadriceps: -21%). Molecular analyses revealed elevated protein ubiquitination in HCT116, whereas mHCT116 also displayed elevated Murf1 and atrogin-1 expression, along with reduced mitochondrial proteins PGC1α, OPA1, mitofusin 2 and cytochrome C. Further, elevated IL6 levels were found in the blood of mHCT116 hosts, which was associated with higher phosphorylation of STAT3 in skeletal muscle. To clarify whether STAT3 was a main player in muscle wasting in this model, HCT116 cells were co-cultured with C2C12 myotubes. Marked myotube atrophy (-53%) was observed, along with elevated phospho-STAT3 levels (+149%). Conversely, inhibition of STAT3 signaling by means of a JAK/STAT3 inhibitor was sufficient to rescue myotube atrophy induced by HCT116 cells (+55%). Overall, our results indicate that the formation of LM exacerbates cachectic phenotype and associated skeletal muscle molecular alterations in HCT116 tumor hosts.Item MC38 Tumors Induce Musculoskeletal Defects in Colorectal Cancer(MDPI, 2021-02-02) Huot, Joshua R.; Pin, Fabrizio; Essex, Alyson L.; Bonetto, Andrea; Surgery, School of MedicineColorectal cancer (CRC) is a leading cause of cancer-related death, and the prevalence of CRC in young adults is on the rise, making this a largescale clinical concern. Advanced CRC patients often present with liver metastases (LM) and an increased incidence of cachexia, i.e., musculoskeletal wasting. Despite its high incidence in CRC patients, cachexia remains an unresolved issue, and animal models for the study of CRC cachexia, in particular, metastatic CRC cachexia, remain limited; therefore, we aimed to establish a new model of metastatic CRC cachexia. C57BL/6 male mice (8 weeks old) were subcutaneously (MC38) or intrasplenically injected (mMC38) with MC38 murine CRC cells to disseminate LM, while experimental controls received saline (n = 5-8/group). The growth of subcutaneous MC38 tumors was accompanied by a reduction in skeletal muscle mass (-16%; quadriceps muscle), plantarflexion force (-22%) and extensor digitorum longus (EDL) contractility (-20%) compared to experimental controls. Meanwhile, the formation of MC38 LM (mMC38) led to heighted reductions in skeletal muscle mass (-30%; quadriceps), plantarflexion force (-28%) and EDL contractility (-35%) compared to sham-operated controls, suggesting exacerbated cachexia associated with LM. Moreover, both MC38 and mMC38 tumor hosts demonstrated a marked loss of bone indicated by reductions in trabecular (Tb.BV/TV: -49% in MC38, and -46% in mMC38) and cortical (C.BV/TV: -12% in MC38, and -8% in mMC38) bone. Cell culture experiments revealed that MC38 tumor-derived factors directly promote myotube wasting (-18%) and STAT3 phosphorylation (+5-fold), while the pharmacologic blockade of STAT3 signaling was sufficient to preserve myotube atrophy in the presence of MC38 cells (+21%). Overall, these results reinforce the notion that the formation of LM heightens cachexia in an experimental model of CRC.