- Browse by Subject
Browsing by Subject "Liver damage"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of Liver Injury From Specific Drugs, or Groups of Drugs, With Polymorphisms in HLA and Other Genes in a Genome-Wide Association Study(Elsevier, 2017-04) Nicoletti, Paola; Aithal, Guruprasad P.; Bjornsson, Einar S.; Andrade, Raul J.; Sawle, Ashley; Arrese, Marco; Barnhart, Huiman X.; Bondon-Guitton, Emmanuelle; Hayashi, Paul H.; Bessone, Fernando; Carvajal, Alfonso; Cascorbi, Ingolf; Cirulli, Elizabeth T.; Chalasani, Naga; Conforti, Anita; Coulthard, Sally A.; Daly, Mark J.; Day, Christopher P.; Dillon, John F.; Fontana, Robert J.; Grove, Jane I.; Hallberg, Pär; Hernández, Nelia; Ibáñez, Luisa; Kullak-Ublick, Gerd A.; Laitinen, Tarja; Larrey, Dominique; Lucena, M. Isabel; Maitland-van der Zee, Anke H.; Martin, Jennifer H.; Molokhia, Mariam; Pirmohamed, Munir; Powell, Elizabeth E.; Qin, Shengying; Serrano, Jose; Stephens, Camilla; Stolz, Andrew; Wadelius, Mia; Watkins, Paul B.; Floratos, Aris; Shen, Yufeng; Nelson, Matthew R.; Urban, Thomas J.; Daly, Ann K.; International Drug-Induced Liver Injury Consortium; Drug-Induced Liver Injury Network Investigators; International Serious Adverse Events Consortium; Medicine, School of MedicineBACKGROUND & AIMS: We performed a genome-wide association study (GWAS) to identify genetic risk factors for drug-induced liver injury (DILI) from licensed drugs without previously reported genetic risk factors. METHODS: We performed a GWAS of 862 persons with DILI and 10,588 population-matched controls. The first set of cases was recruited before May 2009 in Europe (n = 137) and the United States (n = 274). The second set of cases were identified from May 2009 through May 2013 from international collaborative studies performed in Europe, the United States, and South America. For the GWAS, we included only cases with patients of European ancestry associated with a particular drug (but not flucloxacillin or amoxicillin-clavulanate). We used DNA samples from all subjects to analyze HLA genes and single nucleotide polymorphisms. After the discovery analysis was concluded, we validated our findings using data from 283 European patients with diagnosis of DILI associated with various drugs. RESULTS: We associated DILI with rs114577328 (a proxy for A*33:01 a HLA class I allele; odds ratio [OR], 2.7; 95% confidence interval [CI], 1.9-3.8; P = 2.4 × 10-8) and with rs72631567 on chromosome 2 (OR, 2.0; 95% CI, 1.6-2.5; P = 9.7 × 10-9). The association with A*33:01 was mediated by large effects for terbinafine-, fenofibrate-, and ticlopidine-related DILI. The variant on chromosome 2 was associated with DILI from a variety of drugs. Further phenotypic analysis indicated that the association between DILI and A*33:01 was significant genome wide for cholestatic and mixed DILI, but not for hepatocellular DILI; the polymorphism on chromosome 2 was associated with cholestatic and mixed DILI as well as hepatocellular DILI. We identified an association between rs28521457 (within the lipopolysaccharide-responsive vesicle trafficking, beach and anchor containing gene) and only hepatocellular DILI (OR, 2.1; 95% CI, 1.6-2.7; P = 4.8 × 10-9). We did not associate any specific drug classes with genetic polymorphisms, except for statin-associated DILI, which was associated with rs116561224 on chromosome 18 (OR, 5.4; 95% CI, 3.0-9.5; P = 7.1 × 10-9). We validated the association between A*33:01 terbinafine- and sertraline-induced DILI. We could not validate the association between DILI and rs72631567, rs28521457, or rs116561224. CONCLUSIONS: In a GWAS of persons of European descent with DILI, we associated HLA-A*33:01 with DILI due to terbinafine and possibly fenofibrate and ticlopidine. We identified polymorphisms that appear to be associated with DILI from statins, as well as 2 non-drug-specific risk factors.Item Lessons from a BACE1 inhibitor trial: off-site but not off base(Elsevier, 2014-10) Lahiri, Debomoy K.; Maloney, Bryan; Long, Justin M.; Greig, Nigel H.; Department of Medical & Molecular Genetics, IU School of MedicineAlzheimer's disease (AD) is characterized by formation of neuritic plaque primarily composed of a small filamentous protein called amyloid-β peptide (Aβ). The rate-limiting step in the production of Aβ is the processing of Aβ precursor protein (APP) by β-site APP-cleaving enzyme (BACE1). Hence, BACE1 activity plausibly plays a rate-limiting role in the generation of potentially toxic Aβ within brain and the development of AD, thereby making it an interesting drug target. A phase II trial of the promising LY2886721 inhibitor of BACE1 was suspended in June 2013 by Eli Lilly and Co., due to possible liver toxicity. This outcome was apparently a surprise to the study's team, particularly since BACE1 knockout mice and mice treated with the drug did not show such liver toxicity. Lilly proposed that the problem was not due to LY2886721 anti-BACE1 activity. We offer an alternative hypothesis, whereby anti-BACE1 activity may induce apparent hepatotoxicity through inhibiting BACE1's processing of β-galactoside α-2,6-sialyltransferase I (STGal6 I). In knockout mice, paralogues, such as BACE2 or cathepsin D, could partially compensate. Furthermore, the short duration of animal studies and short lifespan of study animals could mask effects that would require several decades to accumulate in humans. Inhibition of hepatic BACE1 activity in middle-aged humans would produce effects not detectable in mice. We present a testable model to explain the off-target effects of LY2886721 and highlight more broadly that so-called off-target drug effects might actually represent off-site effects that are not necessarily off-target. Consideration of this concept in forthcoming drug design, screening, and testing programs may prevent such failures in the future.