ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Lithotripsy"

Now showing 1 - 10 of 16
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparative Analyses and Ablation Efficiency of Thulium Fiber Laser by Stone Composition
    (Wolters Kluwer, 2024) Johnson, Jeffrey; Lee, Justin; Movassaghi, Miyad; Han, David; Pingle, Srinath-Reddi; Williams, James; Schulster, Michael; Gorroochurn, Prakash; Shao, Yinming; Shah, Ojas; Anatomy, Cell Biology and Physiology, School of Medicine
    Purpose: There are limited data on ablation effects of thulium fiber laser (TFL) settings with varying stone composition. Similarly, little is known surrounding the photothermal effects of TFL lithotripsy regarding the chemical and structural changes after visible char formation. We aim to understand the TFL's ablative efficiency across various stone types and laser settings, while simultaneously investigating the photothermal effects of TFL lithotripsy. Materials and methods: Human specimens of calcium oxalate monohydrate, calcium oxalate dihydrate, uric acid, struvite, cystine, carbonate apatite, and brushite stones were ablated using 13 prespecified settings with the Coloplast TFL Drive. Pre- and postablation mass, ablation time, and total energy were recorded. Qualitative ablative observations were recorded at 1-minute intervals with photographs and gross description. Samples were analyzed with Fourier-transform infrared spectroscopy pre- and postablation and electron microscopy postablation to assess the photothermal effects of TFL. Results: Across all settings and stone types, 0.05 J × 1000 Hz was the best numerically efficient ablation setting. When selected for more clinically relevant laser settings (ie, 10-20 W), 0.2 J × 100 Hz, short pulse was the most numerically efficient setting for calcium oxalate dihydrate, cystine, and struvite stones. Calcium oxalate monohydrate ablated with the best numerical efficiency at 0.4 J × 40 Hz, short pulse. Uric acid and carbonate apatite stones ablated with the best numerical efficiency at 0.3 J × 60 Hz, short pulse. Brushite stones ablated with the best numerical efficiency at 0.5 J × 30 Hz, short pulse. Pulse duration impacted ablation effectiveness greatly with 6/8 (75%) of inadequate ablations occurring in medium or long pulse settings. The average percent of mass lost during ablation was 57%; cystine stones averaged the highest percent mass lost at 71%. Charring was observed in 36/91 (40%) specimens. Charring was most often seen in uric acid, cystine, and brushite stones across all laser settings. Electron microscopy of char demonstrated a porous melting effect different to that of brittle fracture. Fourier-transform infrared spectroscopy of brushite char demonstrated a chemical composition change to amorphous calcium phosphate. Conclusions: We describe the optimal ablation settings based on stone composition, which may guide urologists towards more stone-specific care when using thulium laser for treating renal stones (lower energy settings would be safer for ureteral stones). For patients with unknown stone composition, lasers can be preset to target common stone types or adjusted based on visual cues. We recommend using short pulse for all TFL lithotripsy of calculi and altering the settings based on visual cues and efficiency to minimize the charring, an effect which can make the stone refractory to further dusting and fragmentation.
  • Loading...
    Thumbnail Image
    Item
    Comparison of Tissue Injury from Focused Ultrasonic Propulsion of Kidney Stones Versus Extracorporeal Shock Wave Lithotripsy
    (Elsevier, 2014-01) Connors, Bret A.; Evan, Andrew P.; Blomgren, Philip M.; Hsi, Ryan S.; Harper, Jonathan D.; Sorensen, Mathew D.; Wang, Yak-Nam; Simon, Julianna C.; Paun, Marla; Starr, Frank; Cunitz, Bryan W.; Bailey, Michael R.; Lingeman, James E.; Department of Anatomy & Cell Biology, IU School of Medicine
    Purpose Focused ultrasonic propulsion is a new non-invasive technique designed to move kidney stones and stone fragments out of the urinary collecting system. However, the extent of tissue injury associated with this technique is not known. As such, we quantitated the amount of tissue injury produced by focused ultrasonic propulsion under simulated clinical treatment conditions, and under conditions of higher power or continuous duty cycles, and compared those results to SWL injury. Materials and Methods A human calcium oxalate monohydrate stone and/or nickel beads were implanted (with ureteroscopy) into 3 kidneys of live pigs (45–55 kg) and repositioned using focused ultrasonic propulsion. Additional pig kidneys were exposed to SWL level pulse intensities or continuous ultrasound exposure of 10 minutes duration (ultrasound probe either transcutaneous or on the kidney). These kidneys were compared to 6 kidneys treated with an unmodified Dornier HM3 Lithotripter (2400 shocks, 120 SWs/min and 24 kV). Histological analysis was performed to assess the volume of hemorrhagic tissue injury created by each technique (% functional renal volume, FRV). Results SWL produced a lesion of 1.56±0.45% FRV. Ultrasonic propulsion produced no detectable lesion with the simulated clinical treatment. A lesion of 0.46±0.37% FRV or 1.15±0.49% FRV could be produced if excessive treatment parameters were used while the ultrasound probe was placed on the kidney. Conclusions Focused ultrasonic propulsion produced no detectable morphological injury to the renal parenchyma when using clinical treatment parameters and produced injury comparable in size to SWL when using excessive treatment parameters.
  • Loading...
    Thumbnail Image
    Item
    Consultation on kidney stones, Copenhagen 2019: lithotripsy in percutaneous nephrolithotomy
    (Springer, 2021-06) Axelsson, Tomas Andri; Cracco, Cecilia; Desai, Mahesh; Hasan, Mudhar Nazar; Knoll, Thomas; Montanari, Emanuele; Pérez‑Fentes, Daniel; Straub, Michael; Thomas, Kay; Williams, James C., Jr.; Brehmer, Marianne; Osther, Palle J.S.; Anatomy and Cell Biology, School of Medicine
    Purpose: To evaluate the balance between existing evidence and expert opinions on the safety and efficacy of new technological improvements in lithotripsy techniques for percutaneous nephrolithotomy (PCNL). Methods: A scoping review approach was applied to search literature in Pubmed, Embase, and Web of Science. Consensus by key opinion leaders was reached at a 2-day meeting entitled "Consultation on Kidney Stones: Aspects of Intracorporeal Lithotripsy" held in Copenhagen, Denmark, in September 2019. Results: New-generation dual-mode single-probe lithotripsy devices have shown favourable results compared with use of ballistic or ultrasonic lithotripters only. However, ballistic and ultrasonic lithotripters are also highly effective and safe and have been the backbone of PCNL for many years. Compared with standard PCNL, it seems that mini PCNL is associated with fewer bleeding complications and shorter hospital admissions, but also with longer operating room (OR) time and higher intrarenal pressure. Use of laser lithotripsy combined with suction in mini PCNL is a promising alternative that may improve such PCNL by shortening OR times. Furthermore, supine PCNL is a good alternative, especially in cases with complex renal stones and large proximal ureteric stones; in addition, it facilitates endoscopic combined intrarenal surgery (ECIRS). Conclusion: Recent technological improvements in PCNL techniques are promising, but there is a lack of high-level evidence on safety and efficacy. Different techniques suit different types of stones and patients. The evolution of diverse methods has given urologists the possibility of a personalized stone approach, in other words, the right approach for the right patient.
  • Loading...
    Thumbnail Image
    Item
    The effect of extracorporeal shock wave lithotripsy (ESWL) on renal hemodynamics: possible roles of calcium and iron
    (1993) Lai-Zhang, Jie
  • Loading...
    Thumbnail Image
    Item
    Effect of renal shock wave lithotripsy on the development of metabolic syndrome in a juvenile swine model: a pilot study
    (Elsevier, 2015-04) Handa, Rajash K.; Liu, Ziyue; Connors, Bret A.; Alloosh, Mouhamad; Basile, David P.; Tune, Johnathan D.; Sturek, Michael; Evan, Andrew P.; Lingeman, James E.; Department of Anatomy & Cell Biology, IU School of Medicine
    PURPOSE: We performed a pilot study to assess whether renal shock wave lithotripsy influences metabolic syndrome onset and severity. MATERIALS AND METHODS: Three-month-old juvenile female Ossabaw miniature pigs were treated with shock wave lithotripsy (2,000 shock waves at 24 kV with 120 shock waves per minute in 2) or sham shock wave lithotripsy (no shock waves in 2). Shock waves were targeted to the upper pole of the left kidney to model treatment that would also expose the pancreatic tail to shock waves. Pigs were then instrumented to directly measure arterial blood pressure via an implanted radiotelemetry device. They later received a hypercaloric atherogenic diet for about 7 months. Metabolic syndrome development was assessed by the intravenous glucose tolerance test. RESULTS: Metabolic syndrome progression and severity were similar in the sham treated and lithotripsy groups. The only exception arterial blood pressure, which remained relatively constant in sham treated pigs but began to increase at about 2 months towards hypertensive levels in lithotripsy treated pigs. Metabolic data on the 2 groups were pooled to provide a more complete assessment of metabolic syndrome development and progression in this juvenile pig model. The intravenous glucose tolerance test revealed substantial insulin resistance with impaired glucose tolerance within 2 months on the hypercaloric atherogenic diet with signs of further metabolic impairment at 7 months. CONCLUSIONS: These preliminary results suggest that renal shock wave lithotripsy is not a risk factor for worsening glucose tolerance or diabetes mellitus onset. However, it appears to be a risk factor for early onset hypertension in metabolic syndrome.
  • Loading...
    Thumbnail Image
    Item
    First In-Human Burst Wave Lithotripsy for Kidney Stone Comminution: Initial Two Case Studies
    (Mary Ann Liebert, Inc., 2021) Harper, Jonathan D.; Metzler, Ian; Hall, Michael Kennedy; Chen, Tony T.; Maxwell, Adam D.; Cunitz, Bryan W.; Dunmire, Barbrina; Thiel, Jeff; Williams, James C., Jr.; Bailey, Michael R.; Sorensen, Mathew D.; Anatomy, Cell Biology and Physiology, School of Medicine
    Purpose: To test the effectiveness (Participant A) and tolerability (Participant B) of urinary stone comminution in the first-in-human trial of a new technology, burst-wave lithotripsy (BWL). Materials and Methods: An investigational BWL and ultrasonic propulsion system was used to target a 7-mm kidney stone in the operating room before ureteroscopy (Participant A). The same system was used to target a 7.5 mm ureterovesical junction stone in clinic without anesthesia (Participant B). Results: For Participant A, a ureteroscope inserted after 9 minutes of BWL observed fragmentation of the stone to <2 mm fragments. Participant B tolerated the procedure without pain from BWL, required no anesthesia, and passed the stone on day 15. Conclusions: The first-in-human tests of BWL pulses were successful in that a renal stone was comminuted in <10 minutes, and BWL was also tolerated by an awake subject for a distal ureteral stone.
  • Loading...
    Thumbnail Image
    Item
    First Series Using Ultrasonic Propulsion and Burst Wave Lithotripsy to Treat Ureteral Stones
    (American Urological Association Education and Research, Inc., 2022) Hall, M. Kennedy; Thiel, Jeff; Dunmire, Barbrina; Samson, Patrick C.; Kessler, Ross; Sunaryo, Peter; Sweet, Robert M.; Metzler, Ian S.; Chang, Helena C.; Gunn, Martin; Dighe, Manjiri; Anderson, Layla; Popchoi, Christina; Managuli, Ravi; Cunitz, Bryan W.; Burke, Barbara H.; Ding, Lisa; Gutierrez, Brianna; Liu, Ziyue; Sorensen, Mathew D.; Wessells, Hunter; Bailey, Michael R.; Harper, Jonathan D.; Biostatistics and Health Data Science, School of Medicine
    Purpose: Our goal was to test transcutaneous focused ultrasound in the form of ultrasonic propulsion and burst wave lithotripsy to reposition ureteral stones and facilitate passage in awake subjects. Materials and methods: Adult subjects with a diagnosed proximal or distal ureteral stone were prospectively recruited. Ultrasonic propulsion alone or with burst wave lithotripsy was administered by a handheld transducer to awake, unanesthetized subjects. Efficacy outcomes included stone motion, stone passage, and pain relief. Safety outcome was the reporting of associated anticipated or adverse events. Results: Twenty-nine subjects received either ultrasonic propulsion alone (n = 16) or with burst wave lithotripsy bursts (n = 13), and stone motion was observed in 19 (66%). The stone passed in 18 (86%) of the 21 distal ureteral stone cases with at least 2 weeks follow-up in an average of 3.9±4.9 days post-procedure. Fragmentation was observed in 7 of the burst wave lithotripsy cases. All subjects tolerated the procedure with average pain scores (0-10) dropping from 2.1±2.3 to 1.6±2.0 (P = .03). Anticipated events were limited to hematuria on initial urination post-procedure and mild pain. In total, 7 subjects had associated discomfort with only 2.2% (18 of 820) propulsion bursts. Conclusions: This study supports the efficacy and safety of using ultrasonic propulsion and burst wave lithotripsy in awake subjects to reposition and break ureteral stones to relieve pain and facilitate passage.
  • Loading...
    Thumbnail Image
    Item
    First-in-human clinical trial of ultrasonic propulsion of kidney stones
    (First in Human Clinical Trial of Ultrasonic Propulsion of Kidney Stones, 2016-04) Harper, Jonathan D.; Cunitz, Bryan W.; Dunmire, Barbrina; Lee, Franklin C.; Sorensen, Mathew D.; Hsi, Ryan S.; Thiel, Jeff; Wessells, Hunter; Lingeman, James E.; Bailey, Michael R.; Urology, School of Medicine
    PURPOSE: Ultrasonic propulsion is a new technology using focused ultrasound energy applied transcutaneously to reposition kidney stones. We report what are to our knowledge the findings from the first human investigational trial of ultrasonic propulsion toward the applications of expelling small stones and dislodging large obstructing stones. MATERIALS AND METHODS: Subjects underwent ultrasonic propulsion while awake without sedation in clinic, or during ureteroscopy while anesthetized. Ultrasound and a pain questionnaire were completed before, during and after propulsion. The primary outcome was to reposition stones in the collecting system. Secondary outcomes included safety, controllable movement of stones and movement of stones less than 5 mm and 5 mm or greater. Adverse events were assessed weekly for 3 weeks. RESULTS: Kidney stones were repositioned in 14 of 15 subjects. Of the 43 targets 28 (65%) showed some level of movement while 13 (30%) were displaced greater than 3 mm to a new location. Discomfort during the procedure was rare, mild, brief and self-limited. Stones were moved in a controlled direction with more than 30 fragments passed by 4 of the 6 subjects who had previously undergone a lithotripsy procedure. The largest stone moved was 10 mm. One patient experienced pain relief during treatment of a large stone at the ureteropelvic junction. In 4 subjects a seemingly large stone was determined to be a cluster of small passable stones after they were moved. CONCLUSIONS: Ultrasonic propulsion was able to successfully reposition stones and facilitate the passage of fragments in humans. No adverse events were associated with the investigational procedure.
  • Loading...
    Thumbnail Image
    Item
    Fragmentation of Stones by Burst Wave Lithotripsy in the First 19 Humans
    (Wolters Kluwer, 2022) Harper, Jonathan D.; Lingeman, James E.; Sweet, Robert M.; Metzler, Ian S.; Sunaryo, Peter L.; Williams, James C., Jr.; Maxwell, Adam D.; Thiel, Jeff; Cunitz, Bryan W.; Dunmire, Barbrina; Bailey, Michael R.; Sorensen, Mathew D.; Urology, School of Medicine
    Purpose: We report stone comminution in the first 19 human subjects by burst wave lithotripsy (BWL), which is the transcutaneous application of focused, cyclic ultrasound pulses. Materials and methods: This was a prospective multi-institutional feasibility study recruiting subjects undergoing clinical ureteroscopy (URS) for at least 1 stone ≤12 mm as measured on computerized tomography. During the planned URS, either before or after ureteroscope insertion, BWL was administered with a handheld transducer, and any stone fragmentation and tissue injury were observed. Up to 3 stones per subject were targeted, each for a maximum of 10 minutes. The primary effectiveness outcome was the volume percent comminution of the stone into fragments ≤2 mm. The primary safety outcome was the independent, blinded visual scoring of tissue injury from the URS video. Results: Overall, median stone comminution was 90% (IQR 20, 100) of stone volume with 21 of 23 (91%) stones fragmented. Complete fragmentation (all fragments ≤2 mm) within 10 minutes of BWL occurred in 9 of 23 stones (39%). Of the 6 least comminuted stones, likely causative factors for decreased effectiveness included stones that were larger than the BWL beamwidth, smaller than the BWL wavelength or the introduction of air bubbles from the ureteroscope. Mild reddening of the papilla and hematuria emanating from the papilla were observed ureteroscopically. Conclusions: The first study of BWL in human subjects resulted in a median of 90% comminution of the total stone volume into fragments ≤2 mm within 10 minutes of BWL exposure with only mild tissue injury.
  • Loading...
    Thumbnail Image
    Item
    In Vitro Evaluation of Urinary Stone Comminution with a Clinical Burst Wave Lithotripsy System
    (Mary Ann Liebert, Inc., 2020-11) Ramesh, Shivani; Chen, Tony T.; Maxwell, Adam D.; Cunitz, Bryan W.; Dunmire, Barbrina; Thiel, Jeff; Williams, James C., Jr.; Gardner, Anthony; Liu, Ziyue; Metzler, Ian; Harper, Jonathan D.; Sorensen, Mathew D.; Bailey, Michael R.; Anatomy, Cell Biology and Physiology, School of Medicine
    Objective: Our goals were to validate stone comminution with an investigational burst wave lithotripsy (BWL) system in patient-relevant conditions and to evaluate the use of ultrasonic propulsion to move a stone or fragments to aid in observing the treatment endpoint. Materials and Methods: The Propulse-1 system, used in clinical trials of ultrasonic propulsion and upgraded for BWL trials, was used to fragment 46 human stones (5-7 mm) in either a 15-mm or 4-mm diameter calix phantom in water at either 50% or 75% dissolved oxygen level. Stones were paired by size and composition, and exposed to 20-cycle, 390-kHz bursts at 6-MPa peak negative pressure (PNP) and 13-Hz pulse repetition frequency (PRF) or 7-MPa PNP and 6.5-Hz PRF. Stones were exposed in 5-minute increments and sieved, with fragments >2 mm weighed and returned for additional treatment. Effectiveness for pairs of conditions was compared statistically within a framework of survival data analysis for interval censored data. Three reviewers blinded to the experimental conditions scored ultrasound imaging videos for degree of fragmentation based on stone response to ultrasonic propulsion. Results: Overall, 89% (41/46) and 70% (32/46) of human stones were fully comminuted within 30 and 10 minutes, respectively. Fragments remained after 30 minutes in 4% (1/28) of calcium oxalate monohydrate stones and 40% (4/10) of brushite stones. There were no statistically significant differences in comminution time between the two output settings (p = 0.44), the two dissolved oxygen levels (p = 0.65), or the two calyx diameters (p = 0.58). Inter-rater correlation on endpoint detection was substantial (Fleiss' kappa = 0.638, p < 0.0001), with individual reviewer sensitivities of 95%, 86%, and 100%. Conclusions: Eighty-nine percent of human stones were comminuted with a clinical BWL system within 30 minutes under conditions intended to reflect conditions in vivo. The results demonstrate the advantage of using ultrasonic propulsion to disperse fragments when making a visual determination of breakage endpoint from the real-time ultrasound image.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University