- Browse by Subject
Browsing by Subject "Lithium Ion Battery"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Geometric Characteristics of Lithium Ion Battery Electrodes with Different Packing Densities(Office of the Vice Chancellor for Research, 2015-04-17) Lim, Cheolwoong; Lee, Wen Chao; Bo, Yan; Song, Zhibin; De Andrade, Vincent; De Carlo, Francesco; Kim, Youngsik; Zhu, LikunThe microstructure of electrodes plays a critical role in determining the performance of lithium ion batteries (LIBs), because the microstructure can affect the transport and electrochemical processes within electrodes (1-3). Increasing the volume fraction of active materials in the electrode will increase the energy density. However, the electrodes’ structural properties could also be changed significantly and the critical physical and electrochemical processes in LIBs will be affected. Therefore, the performance of a LIB can be optimized for a specific operating condition by designing electrode microstructures. For instance, Hellweg suggested a spatially varying porous electrode model to improve lithium ion transport in electrolyte phase at high charge/discharge rates (4). He showed that the power density of the graded porosity electrode was higher than a homogeneous porosity electrode without energy loss. In this study, we investigate the realistic geometric characteristics of electrode microstructures under different packing densities and the effect of packing density on the performance of LIBs. Moreover, a spatially varying porous electrode will be studied to increase the electrode energy density without losing rate capability. To investigate geometric characteristics of porous microstructures, cathode electrodes were fabricated from a 94:3:3 (weight %) mixture of LiCoO2 (average particle radius = 5 μm), PVDF, and super-P carbon black. To change the packing density, initial thickness of the electrodes was set in a range of 40 ~ 80 μm. Then all electrodes were pressed down to 40 μm by using a rolling press machine. A synchrotron X-ray nano-computed tomography instrument (nano-CT) at the Advanced Phothon Source of Argonne National Lab was employed to obtain morphological data of the electrodes, with a spatial resolution of 60 nm. The morphology data sets were quantitatively analyzed to characterize their geometric properties. Fig. 1 shows the porosity (ε), specific surface area (As, μm-1), tortuosity (τ), and pore size distribution of 4 different electrode microstructures. The pore size distribution of the un-pressed electrode (ε =0.56, black color) demonstrates nonuniformly dispersed active material. The highest packing density electrode (ε =0.36, red color) shows the highest tortuosity. The charge/discharge experiments were also conducted for these 4 different electrodes. The geometric properties and cell testing results will be analyzed and reported. Acknowledgments: This work was supported by US National Science Foundation under Grant No. 1335850. Fig. 1 Geometric characteristics (porosity ε, specific surface area As, tortuosity τ, pore size distribution) of xray generated porous electrode microstructure with different packing densities.Item Lithium Ion Battery Failure Detection Using Temperature Difference Between Internal Point and Surface(2011-12) Wang, Renxiang; Chen, Yaobin; Chen, Rongrong; Rizkalla, MaherLithium-ion batteries are widely used for portable electronics due to high energy density, mature processing technology and reduced cost. However, their applications are somewhat limited by safety concerns. The lithium-ion battery users will take risks in burn or explosion which results from some internal components failure. So, a practical method is required urgently to find out the failures in early time. In this thesis, a new method based on temperature difference between internal point and surface (TDIS) of the battery is developed to detect the thermal failure especially the thermal runaway in early time. A lumped simple thermal model of a lithium-ion battery is developed based on TDIS. Heat transfer coefficients and heat capacity are determined from simultaneous measurements of the surface temperature and the internal temperature in cyclic constant current charging/discharging test. A look-up table of heating power in lithium ion battery is developed based on the lumped model and cyclic charging/discharging experimental results in normal operating condition. A failure detector is also built based on TDIS and reference heating power curve from the look-up table to detect aberrant heating power and bad parameters in transfer function of the lumped model. The TDIS method and TDIS detector is validated to be effective in thermal runaway detection in a thermal runway experiment. In the validation of thermal runway test, the system can find the abnormal heat generation before thermal runaway happens by detecting both abnormal heating power generation and parameter change in transfer function of thermal model of lithium ion batteries. The result of validation is compatible with the expectation of detector design. A simple and applicable detector is developed for lithium ion battery catastrophic failure detection.Item Mathematical analysis of the lithium ion transport in lithium ion batteries using three dimensional reconstructed electrodes(2012-05) Lim, Cheol Woong; Zhu, Likun; Xie, Jian; Kim, Youngsik; Anwar, SohelComputational analysis of lithium ion batteries has been improved since Newman and et al. suggested the porous electrode theory. It assumed the electrode as a simple structure of homogeneous spherical particles. Bruggeman relationship which characterizes porous material by a simple equation was adopted in the homogeneous electrode model instead of the electrode morphology. To improve the prediction of a cell performance, the numerical analysis requires the realistic microstructure of the cell. Based on the experimentally determined microstructure of the positive and negative electrodes of a lithium ion battery (LIB) using x-ray micro/nano-CT technology, three dimensional (3D) simulations have been presented in this research. Tortuosity of the microstructures has been calculated by a linear diffusion equation to characterize the 3D morphology. The obtained tortuosity and porosity results pointed out that the Bruggeman relationship is not sufficiently estimate the tortuosity by the porosity of electrodes. We studied the diffusion-induced stress numerically based on realistic morphology of reconstructed particles during the lithium ion intercalation process. Diffusion-induced stresses were simulated at different C rates under galvonostatic conditions and compared with spherical particles. The simulation results showed that the intercalation stresses of particles depend on their geometric characteristics. The highest von Mises stress and tresca stress in a real particle are several times higher than the stresses in a spherical particle with the same volume. With the reconstructed positive electrode structure, local effects in the LIB cathode electrode during galvanostatic discharge process have been studied. The simulation results reported that large current density usually occurs at the joints between cathode active material particles and in the small channels in electrolyte, which will generate high electric joule power. By using the 3D real image of a LIB cathode electrode, numerical simulation results revealed that the spatial distribution of variable fields such as concentration, voltage, reaction rate, overpotential, and etc. in the cathode electrode are complicated and non-uniform, especially at high discharge rates.