- Browse by Subject
Browsing by Subject "Lisinopril"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs(Lippincott, Williams & Wilkins, 2016-11) Fish, Brian L.; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R.; Cohen, Eric P.; Moulder, John E.; Orschell, Christie M.; Medhora, Meetha; Medicine, School of MedicineThe NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study we have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ∼24 mg m-2 day-1 started orally in the drinking water at 7 days after irradiation and continued to ≥150 days) mitigated late effects in the lungs and kidneys after 12.5 Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 days after 13 Gy leg-out PBI. Furthermore lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg-1 day-1 from days 1-14) which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, we mitigated acute and delayed radiation injuries in multiple organs.Item Corrigendum: Polypharmacy to Mitigate Acute and Delayed Radiation Syndromes(Frontiers Media, 2021-08-25) Gasperetti, Tracy; Miller, Tessa; Gao, Feng; Narayanan, Jayashree; Jacobs, Elizabeth R.; Szabo, Aniko; Cox, George N.; Orschell, Christie M.; Fish, Brian L.; Medhora, Meetha; Medicine, School of Medicine[This corrects the article DOI: 10.3389/fphar.2021.634477.].Item Effect of lisinopril and atenolol on aortic stiffness in patients on hemodialysis(American Society of Nephrology (ASN), 2015-04-07) Georgianos, Panagiotis I.; Agarwal, Rajiv; Department of Medicine, IU School of MedicineBACKGROUND AND OBJECTIVES: Whether improvements in arterial compliance with BP lowering are because of BP reduction alone or if pleiotropic effects of antihypertensive agents contribute remains unclear. It was hypothesized that, among patients on hemodialysis, compared with a β-blocker (atenolol), a lisinopril-based therapy will better reduce arterial stiffness. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Among 200 participants of the Hypertension in Hemodialysis Patients Treated with Atenolol or Lisinopril Trial, 179 patients with valid assessment of aortic pulse wave velocity at baseline (89 patients randomly assigned to open-label lisinopril and 90 patients randomly assigned to atenolol three times a week after dialysis) were included in the secondary analysis. Among them, 109 patients had a valid pulse wave velocity measurement at 6 months. Monthly measured home BP was targeted to <140/90 mmHg by addition of antihypertensive drugs and dry weight adjustment. The difference between drugs in percentage change of aortic pulse wave velocity from baseline to 6 months was analyzed. RESULTS: Contrary to the hypothesis, atenolol-based treatment induced greater reduction in aortic pulse wave velocity relative to lisinopril (between drug difference, 14.8%; 95% confidence interval, 1.5% to 28.5%; P=0.03). Reduction in 44-hour ambulatory systolic and diastolic BP was no different between groups (median [25th, 75th percentile]; atenolol: -21.5 [-37.7, -7.6] versus lisinopril: -15.8 [-28.8, -1.5] mmHg; P=0.27 for systolic BP; -14.1 [-22.6, -5.3] versus -10.9 [-18.4, -0.9] mmHg, respectively; P=0.30 for diastolic BP). Between-drug difference in change of aortic pulse wave velocity persisted after adjustments for age, sex, race, other cardiovascular risk factors, and baseline ambulatory systolic BP but disappeared after adjustment for change in ambulatory systolic BP (11.8%; 95% confidence interval, -2.3% to 25.9%; P=0.10). CONCLUSIONS: Among patients on dialysis, atenolol was superior in improving arterial stiffness. However, differences between atenolol and lisinopril in improving aortic stiffness among patients on hemodialysis may be explained by BP-lowering effects of drugs.Item Hypertension in hemodialysis patients treated with atenolol or lisinopril: a randomized controlled trial(Oxford University Press, 2014-03-01) Agarwal, Rajiv; Sinha, Arjun D.; Pappas, Maria K.; Abraham, Terri N.; Tegegne, Getachew G.; Department of Medicine, IU School of MedicineBackground The purpose of this study was to determine among maintenance hemodialysis patients with echocardiographic left ventricular hypertrophy and hypertension whether in comparison with a β-blocker-based antihypertensive therapy, an angiotensin converting enzyme-inhibitor-based antihypertensive therapy causes a greater regression of left ventricular hypertrophy. Methods Subjects were randomly assigned to either open-label lisinopril (n = 100) or atenolol (n = 100) each administered three times per week after dialysis. Monthly monitored home blood pressure (BP) was controlled to <140/90 mmHg with medications, dry weight adjustment and sodium restriction. The primary outcome was the change in left ventricular mass index (LVMI) from baseline to 12 months. Results At baseline, 44-h ambulatory BP was similar in the atenolol (151.5/87.1 mmHg) and lisinopril groups, and improved similarly over time in both groups. However, monthly measured home BP was consistently higher in the lisinopril group despite the need for both a greater number of antihypertensive agents and a greater reduction in dry weight. An independent data safety monitoring board recommended termination because of cardiovascular safety. Serious cardiovascular events in the atenolol group occurred in 16 subjects, who had 20 events, and in the lisinopril group in 28 subjects, who had 43 events {incidence rate ratio (IRR) 2.36 [95% confidence interval (95% CI) 1.36–4.23, P = 0.001]}. Combined serious adverse events of myocardial infarction, stroke and hospitalization for heart failure or cardiovascular death in the atenolol group occurred in 10 subjects, who had 11 events and in the lisinopril group in 17 subjects, who had 23 events (IRR 2.29, P = 0.021). Hospitalizations for heart failure were worse in the lisinopril group (IRR 3.13, P = 0.021). All-cause hospitalizations were higher in the lisinopril group [IRR 1.61 (95% CI 1.18–2.19, P = 0.002)]. LVMI improved with time; no difference between drugs was noted. Conclusions Among maintenance dialysis patients with hypertension and left ventricular hypertrophy, atenolol-based antihypertensive therapy may be superior to lisinopril-based therapy in preventing cardiovascular morbidity and all-cause hospitalizations. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases; ClinicalTrials.gov number: NCT00582114)Item Polypharmacy to Mitigate Acute and Delayed Radiation Syndromes(Frontiers Media, 2021-05-17) Gasperetti, Tracy; Miller, Tessa; Gao, Feng; Narayanan, Jayashree; Jacobs, Elizabeth R.; Szabo, Aniko; Cox, George N.; Orschell, Christie M.; Fish, Brian L.; Medhora, Meetha; Medicine, School of MedicineThere is a need for countermeasures to mitigate lethal acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE). In WAG/RijCmcr rats, ARS occurs by 30-days following total body irradiation (TBI), and manifests as potentially lethal gastrointestinal (GI) and hematopoietic (H-ARS) toxicities after >12.5 and >7 Gy, respectively. DEARE, which includes potentially lethal lung and kidney injuries, is observed after partial body irradiation >12.5 Gy, with one hind limb shielded (leg-out PBI). The goal of this study is to enhance survival from ARS and DEARE by polypharmacy, since no monotherapy has demonstrated efficacy to mitigate both sets of injuries. For mitigation of ARS following 7.5 Gy TBI, a combination of three hematopoietic growth factors (polyethylene glycol (PEG) human granulocyte colony-stimulating factor (hG-CSF), PEG murine granulocyte-macrophage-CSF (mGM-CSF), and PEG human Interleukin (hIL)-11), which have shown survival efficacy in murine models of H-ARS were tested. This triple combination (TC) enhanced survival by 30-days from ∼25% to >60%. The TC was then combined with proven medical countermeasures for GI-ARS and DEARE, namely enrofloxacin, saline and the angiotensin converting enzyme inhibitor, lisinopril. This combination of ARS and DEARE mitigators improved survival from GI-ARS, H-ARS, and DEARE after 7.5 Gy TBI or 13 Gy PBI. Circulating blood cell recovery as well as lung and kidney function were also improved by TC + lisinopril. Taken together these results demonstrate an efficacious polypharmacy to mitigate radiation-induced ARS and DEARE in rats.