- Browse by Subject
Browsing by Subject "Lipoxygenase"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 15-Lipoxygenase worsens renal fibrosis, inflammation, and metabolism in a murine model of ureteral obstruction(American Physiological Society, 2022) Montford, John R.; Bauer, Colin; Rahkola, Jeremy; Reisz, Julie A.; Floyd, Deanna; Hopp, Katharina; Soranno, Danielle E.; Klawitter, Jelena; Weiser-Evans, Mary C. M.; Nemenoff, Raphael; Faubel, Sarah; Furgeson, Seth B.; Pediatrics, School of Medicine15-Lipoxygenase (15-LO) is a nonheme iron-containing dioxygenase that has both pro- and anti-inflammatory roles in many tissues and disease states. 15-LO is thought to influence macrophage phenotype, and silencing 15-LO reduces fibrosis after acute inflammatory triggers. The goal of the present study was to determine whether altering 15-LO expression influences inflammation and fibrogenesis in a murine model of unilateral ureteral obstruction (UUO). C57BL/6J mice, 15-LO knockout (Alox15-/-) mice, and 15-LO transgenic overexpressing (15LOTG) mice were subjected UUO, and kidneys were analyzed at 3, 10, and 14 days postinjury. Histology for fibrosis, inflammation, cytokine quantification, flow cytometry, and metabolomics were performed on injured tissues and controls. PD146176, a specific 15-LO inhibitor, was used to complement experiments involving knockout animals. Compared with wild-type animals undergoing UUO, Alox15-/- mouse kidneys had less proinflammatory, profibrotic message along with less fibrosis and macrophage infiltration. PD146176 inhibited 15-LO and resulted in reduced fibrosis and macrophage infiltration similar to Alox15-/- mice. Flow cytometry revealed that Alox15-/- UUO-injured kidneys had a dynamic change in macrophage phenotype, with an early blunting of CD11bHiLy6CHi "M1" macrophages and an increase in anti-inflammatory CD11bHiLy6CInt "M2c" macrophages and reduced expression of the fractalkine receptor chemokine (C-X3-C motif) receptor 1. Many of these findings were reversed when UUO was performed on 15LOTG mice. Metabolomics analysis revealed that wild-type kidneys developed a glycolytic shift postinjury, while Alox15-/- kidneys exhibited increased oxidative phosphorylation. In conclusion, 15-LO manipulation by genetic or pharmacological means induces dynamic changes in the inflammatory microenvironment in the UUO model and appears to be critical in the progression of UUO-induced fibrosis. NEW & NOTEWORTHY: 15-Lipoxygenase (15-LO) has both pro- and anti-inflammatory functions in leukocytes, and its role in kidney injury and repair is unexplored. Our study showed that 15-LO worsens inflammation and fibrosis in a rodent model of chronic kidney disease using genetic and pharmacological manipulation. Silencing 15-LO promotes an increase in M2c-like wound-healing macrophages in the kidney and alters kidney metabolism globally, protecting against anaerobic glycolysis after injury.Item The Role of Lipoxygenase and Interleukin-6 on Islet β-cell Oxidative Stress and Dysfunction(2019-06) Conteh, Abass M.; Mirmira, Raghavendra G.; Linnemann, Amelia K.; Anderson, Ryan M.; Considine, Robert V.; Harrington, Maureen A.Type 1 and Type 2 diabetes (T1D/T2D) share a common etiology that involves an increase in oxidative stress that leads to dysfunction and subsequent β cell death. Lipoxygenases are enzymes that catalyze the oxygenation of polyunsaturated fatty acids to form lipid metabolites involved in a variety of biological functions including cellular oxidative stress response. On the other hand, Interleukin 6 (IL-6) signaling has been demonstrated to be protective in islets. In this study, we explored the effect of lipoxygenase enzymes 12-Lipoxygenase, 12/15 Lipoxygenase and IL-6 on β cell function and survival in mice using both STZ and high-fat diet (HFD) models of diabetes. Alox12-/- mice showed greater impairment in glucose tolerance following STZ and HFD compared to wild-type mice (WT), whereas Alox15-/- were protected against dysglycemia. These findings were accompanied by evidence of islet oxidative stress in Alox12-/- mice and reduced oxidative stress in Alox15-/- mice, consistent with alterations in the expression of antioxidant response enzymes in islets from these mice. Additionally, islets from Alox12-/- mice showed a compensatory increase in Alox15 gene expression and treatment of these mice with the 12/15-lipoxygenase inhibitor ML-351 rescued the dysglycemic phenotype. IL-6 was able to significantly attenuate the generation of reactive oxygen species by proinflammatory cytokines in human pancreatic islets. Furthermore, we find that IL-6 regulates the master antioxidant response protein NRF2. Collectively these results show that loss of Alox12 activates a compensatory increase in Alox15 that sensitizes β cells to oxidative stress and signaling by IL-6 is required for maximal antioxidant response under conditions of increased ROS formation, such as obesity.