- Browse by Subject
Browsing by Subject "Lipotoxicity"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Lipid mediators of liver injury in nonalcoholic fatty liver disease(American Physiological Society, 2019-01-01) Liangpunsakul, Suthat; Chalasani, Naga; Medicine, School of MedicineNonalcoholic fatty liver disease (NAFLD) comprises a spectrum of histopathological phenotypes ranging from simple steatosis to more severe liver disease associated with cell injury, including nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. Only a subset of patients with NAFLD develop NASH from yet incompletely understood mechanisms. Emerging data suggest lipid species other than triglycerides as contributors to the pathogenesis of NASH. In this mini review, we focus on the recent data on the mechanisms of NASH, focusing on these lipid mediators and their potential as therapeutic targets in NASH.Item Sestrin Proteins Protect Against Lipotoxicity-Induced Oxidative Stress in the Liver via Suppression of C-Jun N-Terminal Kinases(Elsevier, 2021) Fang, Zhigang; Kim, Hyeong-Geug; Huang, Menghao; Chowdhury, Kushan; Li, Ming O.; Liangpunsakul, Suthat; Dong, X. Charlie; Biochemistry and Molecular Biology, School of MedicineBackground & aims: Sestrin 1/2/3 (Sesn1/2/3) belong to a small family of proteins that have been implicated in the regulation of metabolic homeostasis and oxidative stress. However, the underlying mechanisms remain incompletely understood. The aim of this work was to illustrate the collective function of Sesn1/2/3 in the protection against hepatic lipotoxicity. Methods: We used Sesn1/2/3 triple knockout (TKO) mouse and cell models to characterize oxidative stress and signal transduction under lipotoxic conditions. Biochemical, histologic, and physiological approaches were applied to illustrate the related processes. Results: After feeding with a Western diet for 8 weeks, TKO mice developed remarkable metabolic associated fatty liver disease that was manifested by exacerbated hepatic steatosis, inflammation, and fibrosis compared with wild-type counterparts. Moreover, TKO mice exhibited higher levels of hepatic lipotoxicity and oxidative stress. Our biochemical data revealed a critical signaling node from sestrins to c-Jun N-terminal kinases (JNKs) in that sestrins interact with JNKs and mitogen-activated protein kinase kinase 7 and suppress the JNK phosphorylation and activity. In doing so, sestrins markedly reduced palmitate-induced lipotoxicity and oxidative stress in both mouse and human hepatocytes. Conclusions: The data from this study suggest that Sesn1/2/3 play an important role in the protection against lipotoxicity-associated oxidative stress and related pathology in the liver.Item The unfolded protein response regulates hepatocellular injury during the pathogenesis of nonalcoholic steatohepatitis(2016-08) Willy, Jeffrey Allen; Wek, Ronald C.Non-alcoholic steatohepatitis (NASH), which is characterized by the induction of hepatocellular death and inflammation, is associated with the activation of cellular stress pathways such as the Unfolded Protein Response (UPR), an adaptive response to disruptions in endoplasmic reticulum (ER) homeostasis. Because the role of the UPR in the progression of liver disease is not well understood, we established an in vitro model to evaluate the role of the UPR in NASH and translated results to clarify disease progression in human liver biopsy samples. Treating HepG2 cells and primary human hepatocytes with saturated, but not unsaturated free fatty acids (FFAs), at physiologic concentrations induced hepatotoxicity by inhibiting autophagic flux. Saturated FFA treatment activated the UPR, including the transcription factors CHOP (GADD153/DDIT3) and NF-κB, leading to increased expression and secretion of cytokines such as TNFα and IL-8 that contributed to hepatic cell death and inflammation. Depletion of either CHOP or the RELA subunit of NF-κB in hepatocytes alleviated autophagy and cytokine secretion, resulting in enhanced cell viability and lowered inflammatory responses during exposure to saturated FFAs. We carried out next generation sequencing on cells deleted for either CHOP or RELA and identified IBTKα as a novel UPR member directly regulated by CHOP and NF-κB. In response to saturated FFAs, loss of IBTKα increased cell survival through lowered phagophore formation and reduced cytokine secretion. We also identified binding partners of IBTKα by immunoprecipitation and LC/MS, indicating that that IBTKα is part of a protein complex which functions at ER exit sites to facilitate initiation of autophagy and protein secretion. Furthermore, we discovered that CHOP and RELA coordinately regulate proteasome activity through NRF2 as an adaptive response to an inhibition of autophagic flux following palmitate exposure. To validate our model, we utilized human liver biopsy samples and demonstrated up-regulation of the UPR coincident with accumulation of autophagy markers, as well as secretion of cytokines IL 8 and TNFα in serum of NASH patients. Our study provides a mechanistic understanding of the roles of the UPR and autophagy in regulating saturated FFA induced hepatotoxicity at the cellular level.