ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Lipid droplet biogenesis"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Glycogen Dynamics Drives Lipid Droplet Biogenesis during Brown Adipocyte Differentiation
    (Cell Press, 2019-11-05) Mayeuf-Louchart, Alicia; Lancel, Steve; Sebti, Yasmine; Pourcet, Benoit; Loyens, Anne; Delhaye, Stéphane; Duhem, Christian; Beauchamp, Justine; Ferri, Lise; Thorel, Quentin; Boulinguiez, Alexis; Zecchin, Mathilde; Dubois-Chevalier, Julie; Eeckhoute, Jérôme; Vaughn, Logan T.; Roach, Peter J.; Dani, Christian; Pederson, Bartholomew A.; Vincent, Stéphane D.; Staels, Bart; Duez, Hélène; Biochemistry and Molecular Biology, School of Medicine
    Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University