- Browse by Subject
Browsing by Subject "Ligands"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Addressing Intersite Coupling Unlocks Large Combinatorial Chemical Spaces for Alchemical Free Energy Methods(American Chemical Society, 2022) Hayes, Ryan L.; Vilseck, Jonah Z.; Brooks, Charles L., III.; Biochemistry and Molecular Biology, School of MedicineAlchemical free energy methods are playing a growing role in molecular design, both for computer-aided drug design of small molecules and for computational protein design. Multisite λ dynamics (MSλD) is a uniquely scalable alchemical free energy method that enables more efficient exploration of combinatorial alchemical spaces encountered in molecular design, but simulations have typically been limited to a few hundred ligands or sequences. Here, we focus on coupling between sites to enable scaling to larger alchemical spaces. We first discuss updates to the biasing potentials that facilitate MSλD sampling to include coupling terms and show that this can provide more thorough sampling of alchemical states. We then harness coupling between sites by developing a new free energy estimator based on the Potts models underlying direct coupling analysis, a method for predicting contacts from sequence coevolution, and find it yields more accurate free energies than previous estimators. The sampling requirements of the Potts model estimator scale with the square of the number of sites, a substantial improvement over the exponential scaling of the standard estimator. This opens up exploration of much larger alchemical spaces with MSλD for molecular design.Item Atypical Chemokine Receptor 3 "Senses" CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation(Aspet, 2023) Schafer, Christopher T.; Chen, Qiuyan; Tesmer, John J. G.; Handel, Tracy M.; Biology, School of ScienceAtypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and β-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gβγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and β-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and β-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gβγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.Item Conformational Dynamics of a Ligand-Free Adenylate Kinase(Public Library of Science, 2013-07-05) Song, Hyun Deok; Zhu, Fangqiang; Physics, School of ScienceAdenylate kinase (AdK) is a phosphoryl-transfer enzyme with important physiological functions. Based on a ligand-free open structure and a ligand-bound closed structure solved by crystallography, here we use molecular dynamics simulations to examine the stability and dynamics of AdK conformations in the absence of ligands. We first perform multiple simulations starting from the open or the closed structure, and observe their free evolutions during a simulation time of 100 or 200 nanoseconds. In all seven simulations starting from the open structure, AdK remained stable near the initial conformation. The eight simulations initiated from the closed structure, in contrast, exhibited large variation in the subsequent evolutions, with most (seven) undergoing large-scale spontaneous conformational changes and approaching or reaching the open state. To characterize the thermodynamics of the transition, we propose and apply a new sampling method that employs a series of restrained simulations to calculate a one-dimensional free energy along a curved pathway in the high-dimensional conformational space. Our calculated free energy profile features a single minimum at the open conformation, and indicates that the closed state, with a high (∼13 kcal/mol) free energy, is not metastable, consistent with the observed behaviors of the unrestrained simulations. Collectively, our simulations suggest that it is energetically unfavorable for the ligand-free AdK to access the closed conformation, and imply that ligand binding may precede the closure of the enzyme.Item Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines(ACS, 2024) Kim, Hong-Rae; Byun, David P.; Thakur, Kalyani; Ritchie, Jennifer; Xie, Yixin; Holewinski, Ronald; Suazo, Kiall F.; Stevens, Mckayla; Liechty, Hope; Tagirasa, Ravichandra; Jing, Yihang; Andresson, Thorkell; Johnson, Steven M.; Yoo, Euna; Biochemistry and Molecular Biology, School of MedicineElectrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SNAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60). Through the optimization of appended recognition elements, we demonstrate the utility of CPzP for covalent inhibition of prolyl endopeptidase (PREP) by targeting a noncatalytic active-site cysteine. This study suggests that the proteome reactivity of CPzPs can be modulated by both electronic and steric features of the ring system, providing a new tunable electrophile for applications in chemoproteomics and covalent inhibitor design.Item Distinct Chemical Determinants are Essential for Achieving Ligands for Superior Optical Detection of Specific Amyloid-β Deposits in Alzheimer's Disease(Wiley, 2024) Wu, Xiongyu; Shirani, Hamid; Vidal, Ruben; Ghetti, Bernardino; Ingelsson, Martin; Klingstedt, Therése; Nilsson, K. Peter R.; Pathology and Laboratory Medicine, School of MedicineAggregated forms of different proteins are common hallmarks for several neurodegenerative diseases, including Alzheimer's disease, and ligands that selectively detect specific protein aggregates are vital. Herein, we investigate the molecular requirements of thiophene-vinyl-benzothiazole based ligands to detect a specific type of Aβ deposits found in individuals with dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. The staining of these Aβ deposits was alternated when switching the terminal heterocyclic moiety attached to the thiophene-vinyl-benzothiazole scaffold. The most prevalent staining was observed for ligands having a terminal 3-methyl-1H-indazole moiety or a terminal 1,2-dimethoxybenzene moiety, verifying that specific molecular interactions between these ligands and the aggregates were necessary. The synthesis of additional thiophene-vinyl-benzothiazole ligands aided in pinpointing additional crucial chemical determinants, such as positioning of nitrogen atoms and methyl substituents, for achieving optimal staining of Aβ aggregates. When combining the optimized thiophene-vinyl-benzothiazole based ligands with a conventional ligand, CN-PiB, distinct staining patterns were observed for sporadic Alzheimer's disease versus dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. Our findings provide chemical insights for developing novel ligands that allow for a more precise assignment of Aβ deposits, and might also aid in creating novel agents for clinical imaging of distinct Aβ aggregates in AD.Item Identification of human A1 adenosine receptor domains important in binding A1 selective ligands(1995) Lasbury, Mark E.Item Molecular Recognition in a Diverse Set of Protein-Ligand Interactions Studied with Molecular Dynamics Simulations and End-Point Free Energy Calculations(ACS Publications, 2013-10-28) Wang, Bo; Li, Liwei; Hurley, Thomas D.; Meroueh, Samy O.; Department of Biochemistry & Molecular Biology, School of MedicineEnd-point free energy calculations using MM-GBSA and MM-PBSA provide a detailed understanding of molecular recognition in protein-ligand interactions. The binding free energy can be used to rank-order protein-ligand structures in virtual screening for compound or target identification. Here, we carry out free energy calculations for a diverse set of 11 proteins bound to 14 small molecules using extensive explicit-solvent MD simulations. The structure of these complexes was previously solved by crystallography and their binding studied with isothermal titration calorimetry (ITC) data enabling direct comparison to the MM-GBSA and MM-PBSA calculations. Four MM-GBSA and three MM-PBSA calculations reproduced the ITC free energy within 1 kcal•mol−1 highlighting the challenges in reproducing the absolute free energy from end-point free energy calculations. MM-GBSA exhibited better rank-ordering with a Spearman ρ of 0.68 compared to 0.40 for MM-PBSA with dielectric constant (ε = 1). An increase in ε resulted in significantly better rank-ordering for MM-PBSA (ρ = 0.91 for ε = 10). But larger ε significantly reduced the contributions of electrostatics, suggesting that the improvement is due to the non-polar and entropy components, rather than a better representation of the electrostatics. SVRKB scoring function applied to MD snapshots resulted in excellent rank-ordering (ρ = 0.81). Calculations of the configurational entropy using normal mode analysis led to free energies that correlated significantly better to the ITC free energy than the MD-based quasi-harmonic approach, but the computed entropies showed no correlation with the ITC entropy. When the adaptation energy is taken into consideration by running separate simulations for complex, apo and ligand (MM-PBSAADAPT), there is less agreement with the ITC data for the individual free energies, but remarkably good rank-ordering is observed (ρ = 0.89). Interestingly, filtering MD snapshots by pre-scoring protein-ligand complexes with a machine learning-based approach (SVMSP) resulted in a significant improvement in the MM-PBSA results (ε = 1) from ρ = 0.40 to ρ = 0.81. Finally, the non-polar components of MM-GBSA and MM-PBSA, but not the electrostatic components, showed strong correlation to the ITC free energy; the computed entropies did not correlate with the ITC entropy.Item Optimizing Multisite λ-Dynamics Throughput with Charge Renormalization(American Chemical Society, 2022) Vilseck, Jonah Z.; Cervantes, Luis F.; Hayes, Ryan L.; Brooks, Charles L., III.; Biochemistry and Molecular Biology, School of MedicineWith the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.